Как выглядит голограмма. Голограмма - это что такое и как она работает? Голография на дисплее смартфона

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство Образования и Науки Республики Татарстан Альметьевский Государственный Нефтяной Институт

Кафедра Физики

По дисциплине: Специальные главы физики

Тема: «Голография и её применение.»

Выполнил: Студент группы 33-91

Караваев А.О.

Проверил: Ст. преподаватель

Хасанова Г.А.

Альметьевск 2015

Введение

Голография

История голографии

Теоретические основы голографии

Виды голограмм и применение голографии

Заключение

Введение

В современном, быстро развивающемся мире все чаще человеку нужно отобразить объект в трех измерениях для более легкого понимания информации, объем которой постоянно растет. Будь то авиадиспетчер, врач или антрополог - всем поможет голография. Трехмерное изображение воздушного пространства в реальном времени упростит задачу авиадиспетчеру, поможет врачу без операций и облучения пациента осмотреть внутренности и поставить диагноз, упростит антропологу восстановление внешности по черепу…

Тем не менее в наши дни мало кто представляет, что такое голография и где она может найти применение.

Голография - одно из наиболее перспективных направлений визуализации трехмерных объектов.

Методы голографии (запись голограммы в трехмерных средах, цветное и панорамное голографирование и т.д.) находят все большее развитие. Она может применяться в ЭВМ с голографической памятью, голографическом электронном микроскопе, голографическом кино и телевидении, голографической интерферометрии и т.д.

История голографии

Оптика - раздел физики, в котором изучаются оптическое излучение (свет), его распространение и явления, наблюдаемые при взаимодействии света с веществом. Примерно до середины XX столетия казалось, что оптика как наука закончила развитие. Однако в последние десятилетия в этой области физики произошли революционные изменения, связанные как с открытием новых закономерностей (принципы квантового усиления, лазеры), так и с развитием идей, основанных на классических и хорошо проверенных представлениях. Здесь прежде всего имеется в виду голография, которая значительно расширяет область практического использования волновых явлений и дает толчок теоретическим исследованиям.

Как средство отображения реальной действительности, голограмма обладает уникальным свойством: в отличие от фотографии, создающей плоское изображение, голографическое изображение может воспроизводить точную трехмерную копию оригинального объекта. Такое изображение со множеством ракурсов, изменяющихся с изменением точки наблюдения, обладает удивительной реалистичностью и зачастую неотличимо от реального объекта.

Голография - метод получения объемного изображения объекта, путем регистрации и последующего восстановления волн. Волны могут быть любые - световые, рентгеновкие, акустические и т.п.

Другое определение голографии: набор технологий для точной записи, воспроизведения и переформирования трёхмерных изображений.

Голограмма является записью интерференционной картины.

Идеи и принципы голографии сформулировал в 1948 г. Д. Габор. Как это иногда бывает в науке, идея голографии родилась при разработке совсем другой проблемы - усовершенствования электронного микроскопа. В 1971 году «за изобретение и развитие голографического принципа» Д.Габор получил Нобелевскую премию в области физики.

Сущность идеи состояла в фиксации полной информации о предмете, причем информации не только об амплитуде световой волны, но и о ее фазе. Это объясняет название голографии (от греч. holos -полный и grapho - пишу).

До изобретения лазера голография практически не развивалась (первые попытки получения голограмм предпринимались Д. Габором и его сотрудниками с использованием ртутной лампы и были низкого качества), поскольку именно голографический метод записи информации использовал важнейшее свойство лазерного излучения - его когерентность.

В 1962 году была создана классическая схема Эммета Лейта и Юриса Упатниекса из Мичиганского Технологического Института (голограммы Лейта-Упатниекса). Ученые записали первую объемную пропускающую голограмму, восстанавливаемую в лазерном свете. Схема записи голограмм, предложенная этими учеными, теперь используется в голографических лабораториях во всем в мире.

Существуют различные способы получения голограмм. Один из самых интересных - способ, предложенный советским ученым Ю.Н.Денисюком.

В 1962 Ю. Н. Денисюк изобрёл способ записи изображения в трехмерных средах, позволяющий сохранить информацию о фазе, амплитуде и спектральном составе волны, пришедшей от объекта. Такие голограммы, названные отражательными, могут быть воспроизведены при освещении пучком обычного белого света. Это научное достижение было оценено в СССР как научное открытие и занесено в Государственный реестр открытий СССР в следующей формулировке: «Установлено ранее неизвестное явление возникновения пространственного неискаженного цветного изображения объекта при отражении излучения от трехмерного элемента прозрачной материальной среды, в которой распределение плотности вещества соответствует распространению интенсивности поля стоячих, волн, образующихся вокруг объекта при рассеянии на нем излучения».

Практически вся современная изобразительная голография базируется на методах, предложенных Ю. Н. Денисюком. Первые высококачественные голограммы по этому методу были выполнены в 1968 году в СССР - Г.А. Соболевым и Д.А. Стаселько, а в США - Л. Зибертом.

В 1969 году Стивен Бентон из Polaroid Recearch Laboratories (США) изготовил пропускающую голограмму, видимую в обычном белом свете. Голограммы, изобретенные Бентоном, были названы радужными, так как они переливаются всеми цветами радуги, из которых состоит белый свет.

Голограмма Бентона - голограмма сфокусированного изображения, допускающая восстановление объектной волны источником излучения со сплошным спектром (лампа накаливания, Солнце) за счет ограничения пространственного спектра объекта в одном (как правило, вертикальном) направлении. При этом цвет изображения зависит от положения глаз наблюдателя и не связан с цветом объекта.

Открытие Бентона позволило начать массовое производство недорогих голограмм путем «штамповки» интерференционных картин на пластик. Голограммы именно такого типа применяются сегодня для защиты от подделок документов, банковских карточек. Благодаря Бентону голография обрела популярность в широких слоях общества.

В 1977 году Ллойд Кросс получил мультиплексную голограмму, состоящую из множества обычных фотографий объекта, снятых с множества точек зрения, лежащих в горизонтальной плоскости. При перемещении такой голограммы в поле зрения можно увидеть все запечатленные кадры.

Теоретические основы голографии, ее свойства

Физическая основа голографии - учение о волнах, их интерференции и дифракции, зародившееся еще в XVII веке при Гюйгенсе. Уже в начале XIX века Юнг, Френель и Фраунгофер располагали достаточными познаниями, чтобы сформулировать основные принципы голографии. Многие ученые во второй половине XIX и начале XX века - Кирхгоф, Рэлей, Аббе, Вольфке, Бе6рош, и Брэгг - подходили к принципам голографии достаточно близко.

Физическая идея состоит в том, что при наложении двух световых пучков, при определенных условиях возникает интерференционная картина, то есть, в пространстве возникают максимумы и минимумы интенсивности света (подобно тому, как две системы волн на воде при пересечении образуют чередующиеся максимумы и минимумы амплитуды волн). Для того, чтобы эта интерференционная картина была устойчивой в течение времени, необходимого для наблюдения, и ее можно было записать, эти две световых волны должны быть согласованы в пространстве и во времени. Такие согласованные волны называются когерентными.

Если волны встречаются в фазе, то они складываются друг с другом и дают результирующую волну с амплитудой, равной сумме их амплитуд. Если же они встречаются в противофазе, то будут гасить одна другую. Между двумя этими крайними положениями наблюдаются различные ситуации сложения волн. Результирующая сложения двух когерентных волн будет всегда стоячей волной. То есть интерференционная картина будет устойчива во времени. Это явление лежит в основе получения и восстановления голограмм.

Обычные источники света не обладают достаточной степенью когерентности для использования в голографии. Поэтому решающее значение для ее развития имело изобретение лазера - источника излучения, обладающего необходимой степенью когерентности и могущего излучать строго одну длину волны.

Голографический метод состоит из двух этапов.

Вначале получают (записывают) голограмму - интерференционную картину, возникающую на фотопластинке при сложении двух когерентных пучков света. На фотопластинке образуется интерференционная картина, представляющая собой чередование светлых и темных пятен. Голографическое изображение не соответствует его внешнему виду.

Для восстановления голограммы (второй этап) ее освещают таким же когерентным излучением. Поскольку голограмма представляет сложную интерференционную картину, то на ее прозрачных и непрозрачных участках происходит дифракция когерентного излучения, и в результате получается изображение.

В настоящее время практически реализованы методы получения голограмм, которые позволяют воспроизвести амплитуду, фазу, спектральный состав, состояние поляризации зарегистрированного излучения и изменение этих параметров во времени.

Деннис Габор, изучая проблему записи изображения, выдвинул замечательную идею. Сущность ее реализации заключается в следующем. Если пучок когерентного света разделить на два и осветить регистрируемый объект только одной частью пучка, направив вторую часть на фотографическую пластинку, то лучи, отраженные от объекта, будут интерферировать с лучами, попадающими непосредственно на пластину от источника света. Пучок света, падающий на пластину, назвали опорным, а пучок, отраженный или прошедший через объект, предметным. Учитывая, что эти пучки получены из одного источника излучения, можно быть уверенным в том, что они когерентны. В данном случае интерференционная картина, образующаяся на пластинке, будет устойчива во времени, т.е. образуется изображение стоячей волны.

Полученная интерференционная картина является кодированным изображением, описывающим объект таким, каким он виден из всех точек фотопластинки. В этом изображении сохранена информация как об амплитуде, так и о фазе отраженных от объекта волн и, следовательно, заложена информация о трехмерном (объемном) объекте.

Фотографическая запись картины интерференции предметной волны и опорной волны обладает свойством восстанавливать изображение объекта, если на такую запись снова направить опорную волну. Т.е. при освещении записанной на пластине картины опорным пучком восстановится изображение объекта, которое зрительно невозможно отличить от реального.

Если смотреть через пластинку под разными углами, можно наблюдать изображение объекта в перспективе с разных сторон. Конечно, полученную таким способом фотопластинку нельзя назвать фотографией. Это и есть голограмма.

Расположение регистрирующей среды относительно направления распространения интерферирующих пучков (независимо от ее формы и геометрических размеров) определяет тип голограммы: пропускающая или отражательная.

Пропускающие голограммы . При ориентации регистрирующей среды таким образом, что интерферирующие пучки падают на ее поверхность с одной стороны, регистрируют так называемые пропускающие голограммы.

В 1962 г. И. Лейт и Ю. Упатниекс получили первые пропускающие голограммы объемных объектов, выполненные с помощью лазера. Схема, предложенная ими, используется в изобразительной голографии повсеместно. Пучок когерентного излучения лазера направляется на полупрозрачное зеркало, с помощью которого получают два пучка - предметный и опорный. Опорный пучок направляют непосредственно на фотопластинку. Предметный пучок освещает объект, голограмму которого регистрируют. Отраженный от объекта световой пучок - объектный попадает на фотопластинку. В плоскости пластинки два пучка - объектный и опорный образуют сложную интерференционную картину, которая вследствие когерентности двух пучков света остается неизменной во времени и представляет собой изображение стоячей волны. Остается только зарегистрировать ее обычным фотографическим путем.

Если голограмму записать в некоторой объемной среде, то полученная модель стоячей волны однозначно воспроизводит не только амплитуду и фазу, но и спектральный состав записанного на ней излучения. Это обстоятельство было положено в основу создания трехмерных (объемных) голограмм.

В основу работы объемных голограмм положен дифракционный эффект Брэгга: в результате интерференции волн, распространяющихся в толстослойной эмульсии, образуются плоскости, засвеченные светом большей интенсивности. После проявления голограммы на засвеченных плоскостях образуются слои почернения. В результате этого создаются так называемые брэгговские плоскости, которые обладают свойством частично отражать свет. Т.е. в эмульсии создается трехмерная интерференционная картина.

Такая толстослойная голограмма обеспечивает эффективное восстановление объектной волны при условии, что угол падения опорного пучка при записи и восстановлении останется неизменным. Не допускается также изменение длины волны света при восстановлении. Такая избирательность объемной пропускающей голограммы позволяет записать на пластинке до нескольких десятков изображений, изменяя угол падения опорного пучка соответственно при записи и восстановлении.

Схема записи пропускающих объемных голограмм аналогична схеме Лейта-Упатниекса для двумерных голограмм.

При восстановлении объемной голограммы, в отличие от плоских пропускающих голограмм, образуется только одно изображение вследствие отражения от голограммы восстанавливающего пучка только в одном направлении, определяемом углом Брэгга.

Отражательные голограммы . Отражательные объемные голограммы записываются по иной схеме. Идея создания таких голограмм принадлежит Ю.Н. Денисюку и известны под именем их создателя.

Изобразительные голограммы Ю. Н. Денисюка, представляют собой отражательные голограммы, полученные при встречном распространении интерферирующих пучков, при этом период интерференционной картины минимален.

Опорный и предметный световые пучки образуются с помощью делителя и посредством зеркала направляются на пластину с двух сторон. Предметная волна освещает фотографическую пластину со стороны эмульсионного слоя, опорный - со стороны стеклянной подложки. Плоскости Брэгга в таких условиях записи располагаются почти параллельно плоскости фотопластины. Таким образом, толщина фотослоя может быть сравнительно небольшой.

На приведенной схеме объектная волна образуется с пропускающей голограммы. Т.е. вначале изготавливаются обычные пропускающие голограммы по описанной выше технологии, а потом уже с этих голограмм (которые называются мастер-голограммами) изготавливают в режиме копирования голограммы Ю. Н. Денисюка.

Основное свойство отражательных голограмм - это возможность восстановления записанного изображения с помощью источника белого света, например, лампы накаливания или солнца. Не менее важным свойством является цветовая избирательность голограммы. Это значит, что при восстановлении изображения белым светом, оно восстановится в том цвете, в каком было записано. Если для записи был использован, например, рубиновый лазер, то восстановленное изображение объекта будет красным.

В соответствии со свойством цветовой избирательности можно получить цветную голограмму объекта, в точности передающую его естественный цвет. Для этого необходимо при записи голограммы смешать три цвета: красный, зеленый и синий либо провести последовательное экспонирование фотопластинки этими цветами.

Основны е свойства голограмм . Эти свойствасвязаны именно с тем, что на них фиксируется не только амплитуды, но и фаза волн. Практически на каждую точку поверхности пластинки падает излучение, отраженное от всех точек предмета. Это означает, что любая, даже маленькая часть содержит зрительную информацию о всем предмете.

1. Изображение предмета можно получить на любой, даже небольшой части голограммы. Но качество изображения, полученного от кусочка голограммы, хуже изображения, полученного от всей голограммы. Голограмму можно разбить на несколько кусков, и каждый будет полностью воспроизводить первоначальное изображение. Отпечаток голограммы, где черные полосы стали прозрачными и наоборот, дает то же изображение, что исходная голограмма. (Ни фотография, ни голограмма «по Денисюку» таким свойством не обладает.)

2. Голографическое изображение можно увеличить на стадии восстановления. Когда голограмму записывают параллельным световым пучком, а восстанавливают расходящимся, изображение увеличивается пропорционально углу расхождения. (Это свойство используется в рентгеновских голографических микроскопах)

3. Если на одну пластинку записать несколько голограмм, используя разные, но не кратные, длины волн, все они могут быть считаны независимо при помощи лазеров с соответствующим излучением. Таким же образом можно записать и полноцветное изображение.

4. Голограмму можно рассчитать и нарисовать при помощи компьютера и даже вручную. Можно создавать голограммы, на которых изображены предметы, не существующие в реальности. Достаточно компьютеру задать форму объекта и длину волны падающего на него света. По этим данным компьютер рисует картину интерференции отраженных лучей. Пропустив световой пучок сквозь искусственную голограмму, можно увидеть объемное изображение придуманного предмета. Так, зонную пластинку Френеля нетрудно начертить, получив простейшую голограмму одной точки, но чем сложнее объект, тем более запутанной становится такая искусственная голограмма.

Следовательно, голография позволяет записывать, хранить, обрабатывать и быстро преобразовывать огромное количество данных. Эти особенности голографии используют для решения многих технических и научных проблем.

Виды голограмм и возможности их применения

В ряде технологических процессов можно использовать образуемые голограммами действительные изображения. При просвечивании голограмм мощным лазером можно наносить на обрабатываемые поверхности сложные узоры. В частности, голограммы уже применялись для бесконтактного нанесения микроэлектронных схем.

Основные преимущества голографических методов перед обычными - контактными или проекционными - достижение практически безаберрационного (неискаженного) изображения на большом поле. Предел разрешения голограммы может достигать долей длины световой волны.

На изображение практически не влияют пылинки, осевшие на голограмму, царапины и другие дефекты, в то время как для контактных или проекционных фотошаблонов это приводит к браку.

Другое применение голограммы в технологии - использование ее в качестве линзы. Фокусирующие свойства зонных решеток известны давно. Однако применение решеток ограничивалось трудностями их изготовления. С помощью голографических линз получали отверстия диаметром до 14 мкм в танталовой пленке, нанесенной на стекло. Голографические решетки совсем не имеют ошибок, свойственных обычным решеткам, нарезанным на делительной машине.

Явление голографии свойственно не только электромагнитным волнам (таким как свет), но и механическим (звуковым).

Соответственно, существует два основных вида голограмм: оптические и акустические. Как показала практика, голографический метод записи информации применим не только к электромагнитным, но и к звуковым волнам. Когерентные звуковые волны известны давно, и ультразвуком можно «освещать» очень большие объекты. Принципы получения звуковой и оптической голографии одни и те же, только вместо изменения интенсивности света измеряется интенсивность давления. Звуковые волны без труда проникают в непрозрачные для света предметы.

Перспективный метод акустической голографии Ї воздействие на воду звуком высокой частоты. При этом на поверхности воды возникает рябь, заменяющая собой интерференционную решетку оптической голограммы. Ее освещают лазером и получают изображение предмета, «освещаемого» звуковой волной. Однако изображение, полученное таким образом, будет находиться далеко от поверхности воды. Чтобы оно находилось близко нужно сфокусировать его при помощи линз. Также рябь легко разрушается от малейшего внешнего воздействия. Можно также просто фотографировать рябь и проявлять ее обычным способом. Можно улучшить качество голограммы, создав нефтяную пленку на поверхности воды. Другими словами, акустическая голография дает возможность создавать оптический аналог акустическому волновому полю. Такие голограммы имеют многообещающие перспективы во многих областях науки, техники и медицины.

В чем состоят преимущества использования звука вместо света? Взаимодействие звука с твердыми и жидкими телами отличается от взаимодействия с ними электромагнитного излучения. Звук может без заметных потерь энергии проходить большие расстояния в плотной однородной среде, однако он будет терять значительное количество энергии при прохождении поверхности раздела. Эта потеря связана с отражением на границе. Наоборот, электромагнитное излучение, такое, как рентгеновские лучи, теряет значительное количество энергии, проходя через среду, но на поверхности раздела потери незначительны. Поэтому только звук может быть эффективен в медицинской диагностике, при неразрушающих испытаниях, в подводной и подземной локации.

В медицине давно используются аппараты УЗИ, позволяющие при помощи звука увидеть внутренние органы человека. Однако изображение, полученное таким образом, будет двумерным. А при использовании голограммы Ї трехмерным.

С помощью голографии успешно решается и проблема визуализации акустических полей, что имеет большое прикладное значение. Возможные применения звуковой голографии: дефектоскопия, изучение рельефа морского дня, звуколокация, звуконавигация, поиск полезных ископаемых, исследование структуры земной коры и т.д. Особое значение имеет ультразвуковая голография для медицинской диагностики.

Регистрация звуковых голограмм производится таким образом, чтобы запись допускала оптическое восстановление. Для этого используются следующие методы: сканирование звукового поля, деформация поверхности жидкости под действием звукового давления, объемнаяголограмма.

Преимущество оптической голограммы над акустической в более неприхотливой поверхности записи. Фотографическая пластинка и интерференционная картина не портятся от встряхивания и даже от разлома пополам.

Голография стала для инженеров настоящим подарком: теперь они могут исследовать и регистрировать процессы и явления, описанные порой только теоретически.

Например, лопатки турбореактивного авиационного двигателя во время работы нагреваются до сотен градусов и деформируются. Каким образом распределяется при этом напряжение в детали, где находится ее слабое место, угрожающее разрушением, - определить это прежде было либо крайне сложно, либо вообще невозможно. С помощью голографических методов такие исследования проводят без особого труда.

Освещенная лазерным светом, голограмма восстанавливает световую волну, отраженную деталью при съемке, и изображение появляется там, где раньше находилась деталь. Если же деталь осталась на месте, возникают сразу две волны: одна идет непосредственно от объекта, другая - от голограммы. Эти волны когерентны и могут интерферировать. В том случае, если объект во время наблюдения подвергся деформации, его изображение покрывается полосами, по которым судят о характере изменений.

У современных технологов появилась новая идея. Она основана на способности лазера по заданной программе «сделать» из заготовки деталь любой формы и размера. Достаточно внутрь технологического лазера вставить голограмму эталонной детали, чтобы избавиться от необходимости писать программу и настраивать лазерную установку. Голограмма сама «подберет» такую конфигурацию луча и распределение его интенсивности, что «вырезанная» деталь будет точной копией эталона.

Надо обратить внимание на еще один, очень похожий способ выделения полезных сигналов, который называется оптической фильтрацией, или распознаванием образов. Подобным образом можно отыскивать нужные изображения среди множества других похожих, например отпечатков пальцев (например, в криминолистике). Для этого с эталона необходимо сделать голограмму, а затем поставить на пути светового пучка, отраженного от проверяемого объекта. Голограмма пропустит свет только от объекта, полностью идентичного эталону, «бракуя» другие изображения. Яркое пятно на выходе оптического фильтра - сигнал, что объект обнаружен. Примечательно, что поиск ведется с огромной скоростью, недостижимой при использовании других методов, поскольку он может вестись автоматически.

Голограммы музейных редкостей уже сделались довольно обычной вещью. Начинают появляться, хотя еще редко, объемные книжные иллюстрации. В то же время, возможность создания объемных изображений открывает новые направления в искусстве - изобразительную голографию и оптический дизайн. голографический голограмма микроскоп электронный

Радужные голограммы Бентона зарегистрированные на тонкослойных светочувствительных материалах (толщиной менее 20мкм) и допускающие восстановление белым светом, меняют цвет при изменении угла наблюдения. Такие голограммы получили широкое распространение в качестве изобразительных голограмм, различных элементов кодирования, маркировки, украшения полиграфической продукции и для повышения защищенности от подделок документов, ценных бумаг и товарных знаков.

Очень перспективна идея голографических носителей, которая заключается в записи информации с помощью лазерного луча на трехмерную подложку, вместо нескольких гигабайт, такая среда могла потенциально сохранять терабайты данных на носителе не больший чем компакт-диск. Голографические данные могут считываться на очень высоких скоростях.

В настоящее время технология этих устройств в достаточной степени отработана, а наиболее сложной задачей стал подбор вещества-носителя информации. В январе 2001 года компания Lucent сообщила о создании носителя, способного выдержать до 1000 циклов перезаписи без ущерба сохранности данных и скорости доступа к ним. Внешне носитель напоминает прозрачный компакт-диск. По данным Imation первые голографические диски смогут хранить около 125 Гб информации, а скорость передачи данных составит до 30 Мб/с.

Однако, голография? вещь не только практического применения, но и важная составляющая современной физики, возможный путь к пониманию устройства нашей Вселенной.

Информационная емкость устройств типа жестких дисков растет год от года, а их размер все уменьшается и уменьшается. Изучая свойства черных дыр физики, вывели абсолютный предел количества информации, которая может содержаться в определенной области пространства или определенное количество вещества. Связанные с этим результаты указывают, что наша Вселенная, которую мы воспринимаем как имеющую три пространственных измерения, на самом деле может быть "написана" на двухмерной поверхности, подобно голограмме.

Заключение

Основоположниками голографии являются Д. Габор - изобретатель голографии, который впервые сформулировал данное понятие и ввел термин «голография», и Ю.Н. Денисюк - первооткрыватель и основатель голографии в трехмерных средах, чье открытие «трехмерная голограмма» перевело голографический метод из области инструментальной оптики в область фундаментальной физики.

Начало широкому практическому применению голографии положили Э. Лейт и Ю. Упатниекс, применившие для регистрации голограмм лазер и внеосевую схему расположения интерферирующих пучков.

Появились исследования, которые заложили основы ряда современных направлений: цифровая голография, динамическая голография - направление, объединяющее голографию и нелинейную оптику, поляризационная голография, акустическая, изобразительная и другие.

Массовая печать и научно-фантастическая литература часто преподносят голографию в довольно искаженном, неверном свете. Нередко они создают в общем неправильное представление об этом методе. Увиденная впервые голограмма завораживает, но физическое объяснение того, как она работает, производит не меньшее впечатление. Только после этого начинаешь понимать как потенциальные возможности, так и пределы применимости голографии - не только сегодня, но и в будущем.
Голография? очень важная область современной науки и техники. Она может быть использована как в бытовых целях (развлечения, 3-D камеры), так и в разных областях науки: от медицины (изучение внутренностей без хирургического вмешательства) до физики (создание теории, проливающей свет на устройство Вселенной). Сейчас раскрыт не весь потенциал голографии, но огромные перспективы, скорее всего, со временем привлекут множество учёных и инвесторов к развитию этого интересного предмета.

Согласованные усилия многих исследователей позволили накопить ряд сведений и фактов о свойствах трехмерных голограмм. За этими на первый взгляд разрозненными фактами достаточно отчетливо вырисовывается то единое явление природы, которое лежит в их основе. Оказывается, что материализованная объемная картина волн интенсивности способна воспроизводить волновое поле со всеми его параметрами - амплитудой, фазой, спектральным составом, состоянием поляризации и даже с изменениями этих параметров во времени.

В качестве заключения также необходимо указать, что наряду с рядом практических задач, решенных методами голографической проекции, существует целый спектр проблем, решение которых методами голографии является задачей будущего. В основном это связано, что общая картина этого явления пока еще далека от завершения. И дело здесь не только в том, что в ряде случаев мы не знаем полностью набор отображающих свойств некоторых видов голограмм. Есть все основания считать, что будут открыты новые неожиданные оптические свойства голограмм. Вполне вероятно, что ряд новых эффектов будет обнаружен при применении светочувствительных материалов, обладающих специфическими свойствами, подобно тому, как применение резонансных и поляризационных сред открыло возможность записи временных и поляризационных характеристик волновых полей. И наконец, прецедент объединения голографии и нелинейной оптики в динамическую голографию показывает, что внесение идей голографии в смежные с ней области знаний может привести к появлению совершенно новых направлений.

Размещено на Allbest.ru

...

Подобные документы

    Физические принципы голографии, уравнения. Способы формирования голограмм. Схема регистрации Габора. Свойства опорной и объектной волны. Технология получения изобразительной и криминалистической голографии. Сущность пространственного мультиплексирования.

    курсовая работа , добавлен 08.05.2014

    Сущность и физическое обоснование явления голографии как восстановления изображения предмета. Свойства источников: когерентность, поляризация, длина волны света. Классификация и типы голографии, сферы практического применения данного явления, технологии.

    реферат , добавлен 11.06.2013

    Голография как способ воспроизведения пространственного изображения предметов, области её применения: голографическое кино и телевидение, трёхмерная фотография, голографические зонные решётки в лазерной технологии, оптотехника, ультразвуковая голография.

    презентация , добавлен 14.09.2012

    Основы оптической голографии. Схемы записи оптических голограмм, отличие от фотографии, маркировка. Разделение пучка когерентного света. Пропускающая голограмма И. Лейта и Ю. Упатниекса. Восстановления изображения с помощью источника белого света.

    презентация , добавлен 14.04.2014

    Применение интерференции для проверки качества обработки поверхностей, "просветления" оптики, измерения показателя преломления веществ. Принцип действия интерферометра. Многолучевая интерференция света. Получение изображения объекта с помощью голографии.

    реферат , добавлен 18.11.2013

    Голография как двухступенчатый процесс записи и восстановления волнового фронта, несущего информацию о предмете. Обработка галогенидосеребряных светочувствительных эмульсий. Оптические схемы голографических интерферометров с диффузным рабочим пучком.

    учебное пособие , добавлен 22.06.2015

    Краткая биография Липмана Габриэля Йонаса. Значение его работ для развития фотографии и голографии. Сущность метода интегральной липмановской фотографии. Принцип мультиплексной голографической записи трехмерных изображений. Преимущества данного способа.

    курсовая работа , добавлен 14.03.2015

    Голография - набор технологий для точной записи, воспроизведения и переформирования волновых полей. Изучение принципа интерференции электромагнитных волн. Использование лазера как источника света. Рассмотрение схем записи Лейта-Упатниекса и Денисюка.

    презентация , добавлен 14.05.2014

    Воспроизведение амплитуды и фазы световых волн с помощью голографии, выход за пределы возможностей линзовых и зеркальных оптических систем. Экспериментальные исследования возможностей применения фазовых модуляторов света для решения прикладных задач.

    дипломная работа , добавлен 17.09.2012

    Взаимодействие лазерного излучения с разными веществами. Появление в спектре вещества новых линий. Использование методов голографии для хранения гигантских объемов информации на небольших носителях. Исследование солнечных орбитальных электростанций.

Красота этого метода в том, что это пока единственный способ истинно реконструировать трехмерную информацию и получить настоящие 3D-дисплеи. Тем не менее эта техника, придуманная почти 70 лет назад, позволяет создать только статичные голограммы. Почему мы не можем динамически менять голограммы и эффективно создать голографический дисплей?

Голографические дисплеи в домах появятся не скоро

Проблема создания трехмерных голографических дисплеев в том, что количество информации в обычной голограмме огромно; свет содержит много информации. К примеру, необходимо порядка миллиона-триллиона пикселей для того, чтобы собрать трехмерный голографический дисплей, а при обычном уровне обновления в 30 кадров в секунду, например, количество данных огромно. Кроме того, нам нужна технология, которая сможет записывать (в режиме реального времени) всю комплексную информацию светового поля, технологии, которые смогут передавать эти огромные объемы данных, а также компьютер, который будет все это обрабатывать. Учитывая то, что мы только-только входим в эру 4K-телевизоров (на экране которых порядка 10 миллионов пикселей), эпоха голографии наступит еще не скоро.

Голограмму можно создать и отобразить с помощью компьютеров


Как мы уже выяснили, мы имеем дело с большим объемом информации. Современные методы изображения динамических голограмм называются пространственными модуляторами света (SLM). Это маленькие, похожие на телевизоры устройства отображения голограмм с помощью отражения лазерного света.

Как мы рассчитываем голограмму? В идеале мы могли бы записать всю информацию о световом поле сцены, но пока у нас нет никакой коммерческой технологии, способной на это. Мы могли бы сделать полное моделирование электромагнитных волн моделируемой сцены, чтобы обнаружить, что рассеивающийся свет в поле выглядит как точки в пространстве, а затем записать эту информацию, чтобы сформировать голограмму. Тем не менее для нынешних технологий это вычислительный кошмар. Возможно, лучшим способом будет глубоко математический подход к этому явлению.

По сути, мы делаем приближение. Оказывается, когда свет дифрагирует, если вы находитесь достаточно далеко от точки дифракции, паттерн, который вы видите, связан с преобразованием Фурье математической репрезентации объекта дифракции. Это значит, что, поскольку наши компьютеры могут делать преобразование Фурье довольно быстро, мы можем быстро генерировать голограммы на лету. Затем, отображая их на SLM, мы можем использовать дифракцию света для формирования произвольных изображений по своему желанию. Эта область называется генерируемой на компьютерах голографией. И теперь, когда компьютеры становятся все быстрее, эта область исследований становится все более популярной.

Лучший голографический телевизор был создан десять лет назад и стоил целое состояние

Qinetiq разработала прототип голографического дисплея, основанный на технологии пространственной модуляции света, 12 лет назад. Она использовала активную систему с двумя различными SLM для обеспечения всей глубины сигнала, необходимого для производства трехмерной картинки. Эта затея была крайне дорогой и была закрыта почти сразу, но максимально качественный голографический дисплей хотя бы был продемонстрирован.

Голография нужна не только для телевидения

Хотя мы считаем, что голография интересна больше возможностями для 3D-дисплеев, в целом у нее есть возможность применения во многих сферах. Вот несколько примеров:

  • Электронная съемка: наблюдая за фазовым смещением интерференции электронов, когда они проходят через тонкие пленки материалов, можно определять состав материалов.
  • Хранение данных: традиционные оптические диски хранят информацию на поверхности. С помощь голографии есть возможность записывать информацию в объемный материал под разными углами - следовательно, можно хранить больше информации, чем позволяют традиционные методики хранения данных.
  • Голографические оптические пинцеты: оптические пинцеты используют силу света, чтобы перемещать небольшие частицы (в основном в области биологии) и создавать оптические ловушки. Используя генерируемые на компьютерах голограммы, ученые могут манипулировать крупными массивами частиц на малых расстояниях.
  • Безопасность: голограммы уже используются на банкнотах и кредитных картах. Используются по большей части из-за того, что технологии для их создания довольно сложны.

Голографическое изображение сегодня находит все большее применение. Некоторые даже считают, что оно может со временем заменить известные нам средства связи. Так это или нет, но уже сейчас оно активно используется в самых разных отраслях. К примеру, всем нам знакомы голографические наклейки. Множество производителей использует их как средство защиты от подделки. На фото ниже представлены некоторые голографические наклейки. Их применение - очень эффективный способ защиты товаров или документов от подделки.

История изучения голографии

Объемное изображение, получаемое в результате преломления лучей, начало изучаться относительно недавно. Однако мы уже можем говорить о существовании истории его изучения. Деннис Габор, английский ученый, в 1948 году впервые определил, что такое голография. Это открытие было очень важным, но его большое значение в то время не было еще очевидным. Работавшие в 1950-е годы исследователи страдали от отсутствия источника света, обладающего когерентностью, - очень важным свойством для развития голографии. Первый лазер был изготовлен в 1960 году. С помощью этого прибора можно получить свет, имеющий достаточную когерентность. Юрис Упатниекс и Иммет Лейт, американские ученые, использовали его для создания первых голограмм. С их помощью получались трехмерные изображения предметов.

В последующие годы исследования продолжались. Сотни научных статей, в которых изучалось понятие о голографии, с тех пор были опубликованы, а также издано множество книг, посвященных этому методу. Однако эти труды адресованы специалистам, а не широкому читателю. В данной статье мы постараемся рассказать обо всем доступным языком.

Что такое голография

Можно предложить следующее определение: голография - это получаемая с помощью лазера объемная фотография. Однако данное определение не совсем удовлетворительно, так как есть множество иных видов трехмерной фотографии. Тем не менее в нем отражено наиболее существенное: голография - это технический метод, который позволяет "записывать" внешний вид того или иного объекта; с ее помощью получается трехмерное изображение, выглядящее так, как реальный предмет; применение лазеров сыграло решающую роль для ее развития.

Голография и ее применение

Исследование голографии позволяет прояснить многие вопросы, связанные с обычной фотографией. В качестве изобразительного искусства объемное изображение может даже бросить вызов последней, поскольку оно позволяет отражать окружающий мир более точно и правильно.

Ученые иногда выделяют эпохи в истории человечества по средствам связи, которые были известны в те или иные столетия. Можно говорить, к примеру, о существовавших в Древнем Египте иероглифах, об изобретении в 1450 году В связи с наблюдаемым в наше время техническим прогрессом новые средства связи, такие как телевидение и телефон, заняли господствующее положение. Хотя голографический принцип находится еще в младенческом состоянии, если говорить о его использовании в средствах информации, существуют основания предполагать, что основанные на нем устройства в будущем смогут заменить известные нам средства связи или хотя бы расширить область их применения.

Научно-фантастическая литература и массовая печать нередко преподносят голографию в неверном, искаженном свете. Они часто создают неправильное представление о данном методе. Объемное изображение, увиденное впервые, завораживает. Однако не меньшее впечатление производит физическое объяснение принципа его устройства.

Интерференционная картина

Способность видеть предметы основана на том, что световые волны, преломляясь ими или отражаясь от них, попадают в наш глаз. Отраженные от некоторого объекта световые волны характеризуются формой волнового фронта, соответствующей форме этого объекта. Картину темных и светлых полос (или линий) создают две группы световых когерентных волн, которые интерферируют. Так образуется объемная голография. При этом данные полосы в каждом конкретном случае составляют комбинацию, зависящую лишь от формы волновых фронтов волн, которые взаимодействуют друг с другом. Такую картину именуют интерференционной. Ее можно зафиксировать, к примеру, на фотографической пластинке, если поместить ее в место, где наблюдается

Многообразие голограмм

Способом, позволяющим записывать (регистрировать) отраженный от предмета волновой фронт, после чего восстанавливать его так, что наблюдателю кажется, что он видит реальный предмет, и является голография. Это эффект, который объясняется тем, что получаемое изображение трехмерно в такой же мере, что и реальный предмет.

Есть множество различных типов голограмм, в которых легко запутаться. Чтобы однозначно определить тот или иной вид, следует употребить четыре или даже пять прилагательных. Из всего их множества мы рассмотрим только основные классы, которые использует современная голография. Однако сначала нужно рассказать немного о таком волновом явлении, как дифракция. Именно она позволяет нам конструировать (вернее, реконструировать) волновой фронт.

Дифракция

Если какой-либо предмет оказывается на пути света, он отбрасывает тень. Свет огибает этот предмет, заходя частично в область тени. Этот эффект именуют дифракцией. Он объясняется волновой природой света, но объяснить его строго достаточно сложно.

Только в очень малом угле проникает свет в область тени, поэтому мы почти не замечаем этого. Однако если на его пути есть множество мелких препятствий, расстояния между которыми составляют только несколько длин световой волны, данный эффект становится достаточно заметным.

Если падение волнового фронта приходится на большое единичное препятствие, "выпадает" соответствующая его часть, что практически не влияет на оставшуюся область данного волнового фронта. Если же множество мелких препятствий находится на его пути, он изменяется в результате дифракции так, что распространяющийся за препятствием свет будет обладать качественно иным волновым фронтом.

Трансформация настолько сильна, что свет начинает даже распространяться в другом направлении. Выходит, что дифракция позволяет нам преобразовать исходный волновой фронт в совершенно отличный от него. Таким образом, дифракция - механизм, с помощью которого мы получаем новый волновой фронт. Устройство, формирующее его вышеописанным путем, именуется Расскажем о ней подробнее.

Дифракционная решетка

Это небольшая пластинка с нанесенными на ней тонкими прямыми параллельными штрихами (линиями). Они отстоят друг от друга на сотую или даже тысячную часть миллиметра. Что происходит, если лазерный луч на своем пути встречает решетку, которая состоит из нескольких размытых темных и ярких полос? Его часть будет прямо проходить через решетку, а часть - загибаться. Так образуются два новых пучка, которые выходят из решетки под определенным углом к исходному лучу и находятся по обе стороны от него. В случае если один лазерный пучок обладает, к примеру, плоским волновым фронтом, два образовавшихся по бокам от него новых пучка также будут иметь плоские волновые фронты. Таким образом, пропуская через дифракционную решетку лазерный луч, мы формируем два новых волновых фронта (плоских). По-видимому, дифракционную решетку можно рассматривать как самый простой пример голограммы.

Регистрация голограммы

Знакомство с основными принципами голографии следует начать с изучения двух плоских волновых фронтов. Взаимодействуя, они образуют интерференционную картину, которую регистрируют на помещенной там же, где находился экран, фотографической пластинке. Эта стадия процесса (первая) в голографии называется записью (или регистрацией) голограммы.

Восстановление изображения

Будем считать, что одна из плоских волн - А, а вторая - В. Волна А именуется опорной, а В - предметной, то есть отраженной от того предмета, изображение которого фиксируется. Она может не отличаться ничем от опорной волны. Однако при создании голограммы трехмерного реального объекта формируется значительно более сложный волновой фронт света, отраженного от предмета.

Интерференционная картина, представленная на фотографической пленке (то есть изображение дифракционной решетки), - это и есть голограмма. Ее можно поместить на пути опорного первичного пучка (пучка лазерного света, обладающего плоским волновым фронтом). В этом случае по обе стороны формируются 2 новых волновых фронта. Первый из них представляет собой точную копию волнового предметного фронта, который распространяется в том же направлении, что и волна В. Вышеописанная стадия именуется восстановлением изображения.

Голографический процесс

Которую создают две плоские после ее записи на фотопластинке представляет собой устройство, позволяющее в случае освещения одной из этих волн восстановить другую плоскую волну. Голографический процесс, таким образом, имеет следующие стадии: регистрацию и последующее "хранение" волнового предметного фронта в виде голограммы (интерференционной картины), и его восстановление спустя любое время при прохождении опорной волны через голограмму.

Предметный волновой фронт в действительности может быть любым. К примеру, он может отражаться от некоторого реального предмета, если он при этом является когерентным опорной волне. Образованная двумя любыми волновыми фронтами, обладающими когерентностью, интерференционная картина - это и есть устройство, позволяющее благодаря дифракции преобразовать один из данных фронтов в другой. Именно здесь и спрятан ключ к такому явлению, как голография. Деннис Габор первым обнаружил это свойство.

Наблюдение формируемого голограммой изображения

В наше время для чтения голограмм начинает использоваться особое устройство - голографический проектор. Он позволяет преобразовать картинку из двух- в трехмерную. Однако для того чтобы просматривать простые голограммы, голографический проектор вовсе не требуется. Вкратце расскажем о том, как рассматривать такие изображения.

Чтобы наблюдать формируемое простейшей голограммой изображение, нужно поместить ее примерно на расстоянии 1 метра от глаза. Сквозь дифракционную решетку нужно смотреть в том направлении, в котором плоские волны (восстановленные) выходят из нее. Так как именно плоские волны попадают в глаз наблюдателя, голографическое изображение также является плоским. Оно предстает перед нами будто "глухая стена", которую равномерно освещает свет, имеющий тот же цвет, что и соответствующее Так как специфических признаков эта "стена" лишена, невозможно определить, насколько далеко она находится. Кажется, будто смотришь на расположенную в бесконечности протяженную стену, но при этом видишь лишь ее часть, которую удается разглядеть сквозь небольшое "окно", то есть голограмму. Следовательно, голограмма - это равномерно светящаяся поверхность, на которой мы не замечаем ничего достойного внимания.

Дифракционная решетка (голограмма) позволяет нам наблюдать несколько простейших эффектов. Их можно продемонстрировать и с использованием голограмм иного типа. Проходя сквозь дифракционную решетку, пучок света расщепляется, формируются два новых пучка. С помощью пучков лазерного излучения можно освещать любую дифракционную решетку. При этом излучение должно отличаться цветом от использованного при ее записи. Угол изгиба пучка цвета зависит от того, какой цвет он имеет. Если он красный (самый длинноволновой), то такой пучок изгибается под большим углом, нежели пучок синего цвета, который имеет наименьшую длину волны.

Сквозь дифракционную решетку можно пропустить смесь всех цветов, то есть белый. В этом случае каждая цветовая компонента этой голограммы искривляется под своим собственным углом. На выходе формируется спектр, аналогичный создаваемому призмой.

Размещение штрихов дифракционной решетки

Штрихи дифракционной решетки следует делать очень близкими друг к другу, чтобы было заметно искривление лучей. К примеру, для искривления красного луча на 20° нужно, чтобы расстояние между штрихами не превышало 0,002 мм. Если их разместить более тесно, луч света начинает изгибаться еще сильнее. Для "записи" данной решетки нужна фотопластинка, которая способна регистрировать настолько тонкие детали. Кроме того, необходимо, чтобы пластинка в процессе экспозиции, а также при регистрации оставалась совершенно неподвижной.

Картина может значительно смазаться даже при малейшем движении, причем настолько, что будет вовсе неразличимой. В этом случае мы увидим не интерференционную картину, а просто стеклянную пластинку, по всей своей поверхности однородно черную или серую. Конечно, в этом случае не будут воспроизводиться эффекты дифракции, формируемые дифракционной решеткой.

Пропускающие и отражательные голограммы

Рассмотренная нами дифракционная решетка именуется пропускающей, поскольку она действует в свете, проходящем сквозь нее. Если же нанести линии решетки не на прозрачную пластинку, а на поверхность зеркала, мы получим дифракционную решетку отражательную. Она отражает под разными углами свет различных цветов. Соответственно, есть два больших класса голограмм - отражательные и пропускающие. Первые наблюдаются в отраженном свете, а вторые - в проходящем.

Голография - одно из замечательных достижений современной науки и техники. Голограммы обладают уникальным свойством - восстанавливать полноценное объемное изображение реальных предметов. Название происходит от греческих слов holos - полный и grapho - пишу, что означает полную запись изображения.
Голография, представляющая собой фотографический процесс в широком смысле этого слова, принципиально отличается от обычной фотографии тем, что в светочувствительном материале происходит регистрация не только интенсивности, но и фазы световых волн, рассеянных объектом и несущих полную информацию о его трехмерной структуре.

Как средство отображения реальной действительности, голограмма обладает уникальным свойством: в отличие от фотографии, создающей плоское изображение, голографическое изображение может воспроизводить точную трехмерную копию оригинального объекта. Такое изображение со множеством ракурсов, изменяющихся с изменением точки наблюдения, обладает удивительной реалистичностью и зачастую неотличимо от реального объекта.
Голография занимается изучением картин, полученных при фотографировании материальных объектов в лучах когерентного лазерного света.

Голограмма - это объёмная картина, возникающая в результате интерференции световых волн. Она демонстрирует уникальный принцип мироздания, согласно которому каждая частица может содержать в себе информацию о целом. Уникальная модель предлагаемая голографией помогает понять энергоинформационную структуру Вселенной.
Для получения голографического изображения - голограммы, лазерный луч пропускается через оптический расщепитель. В результате образуются два лучика, исходящих из одного и того же источника. Один из них называется «опорным». Он проходит сквозь рассеивающий объектив, превращающий его в конус света, который при помощи зеркала направляется на неэкспонированную плёнку или фото пластину. В то же время второй луч - «рабочий» - пропускается через другой рассеивающий объектив и используется для освещения объекта. Свет отражается от него и попадает на ту же плёнку, куда направлен и опорный луч.

Процесс происходящий на фотоплёнке, является ключевым моментом в голографии, а также ключом для расшифровки устройства Мироздания. Когда опорный луч сталкивается со светом рабочего, возникает явление интерференции. Именно интерференция, запечатлённая на фото плёнке или фото пластине, создаёт картину, которая и называется голограммой.
Пространство вокруг нас заполнено волнами различной природы. С помощью органов чувств мы воспринимаем некоторые из них, например, запах, тепло, шум, свет и т.д. Но огромное количество волн мы воспринимать не можем в силу своих неосознанных и не натренированных восприятий. Так мы не чувствуем электромагнитные волны определенного спектра частотных колебаний: радио и теле волны, инфракрасное и ультрафиолетовыое излучения, рентгеновское излучение и т.д. Но кроме этого вокруг нас присутствуют стоячие волны, которыми являются все материальные тела, в том числе и живые организмы. Все, что окружает нас, состоит из элементарных частиц - электронов, протонов, нейтронов, мезонов, глюонов и т.д. Из элементарных частиц состоит и вся Вселенная.

Но квантовая физика доказала, что все элементарные частицы одновременно являются и волнами. Поэтому любой материальный предмет можно представить в виде стоячей волны. (Т.Т.стр.127/27,с.181). Но что такое стоячая волна? Стоячей волной называется волна, образующаяся в результате наложения двух бегущих навстречу друг другу волн, имеющих одинаковую частоту и амплитуду. Стоячая волна это частный случай интерференции волн. В природе можно встретить много примеров проявления интерференции. Например, каждый наблюдал круги, расходившиеся по гладкой поверхности воды от двух одновременно брошенных камней. Каждый из них создаёт свою серию расходящихся от центра круговых волн. А теперь представим себе, что две когерентные волны накладываются одна на другую. Голография применима к волнам любой природы. А это значит, что могут существовать оптические, звуковые, тепловые и др. виды голограмм во всем диапазоне частот колебаний волн. И если глазу или уху недоступна частота колебаний этих волн, то и голографические образования будут невидимыми или неслышимыми.

Изучая это явление в 1948 году английским ученым Питером Габором были заложены основы голографии. Второе свое рождение голография пережила 1962 - 63 годах когда американские физики Э. Лайт и Ю. Упаниекс применили в качестве светового источника для получения голографического изображения когерентный лазерный свет.
В 1982 году произошло еще одно замечательное событие. Исследовательская группа под руководством Алана Аспекта (Alain Aspect) при университете в Париже представила эксперимент, который может оказаться одним из самых значительных в 20 веке. А. Аспект и его группа обнаружили, что в определенных условиях элементарные частицы, например, электроны, способны мгновенно сообщаться друг с другом независимо от расстояния между ними. Hе имеет значения, 10 футов между ними или 10 миллиардов миль. Каким-то образом каждая частица всегда знает, что делает другая. Проблема этого открытия в том, что оно нарушает постулат Эйнштейна о предельной скорости распространения взаимо- действия, равной скорости света. Поскольку путешествие быстрее скорости света равносильно преодолению временного барьера, эта пугающая перспектива заставила некоторых физиков пытаться объяснить опыты сложными обходными путями. Hо других это вдохновило предложить более радикальные объяснения.

Hапример, физик лондонского университета Дейвид Бом (David Bohm) считает, что согласно открытию А. Аспекта, реальная действительность не существует, и что несмотря на ее очевидную плотность, вселенная в своей основе - фикция, гигантская, роскошно детализированная голограмма. Чтобы понять, почему Д. Бом сделал такое поразительное заключение, нужно рассказать о голограммах. Голограмма представляет собой трехмерную фотографию, сдлеланную с помощью лазера. (см-рис.1) Чтобы сделать голограмму, прежде всего фотографируемый предмет должен быть освещен светом лазера. Тогда второй лазерный луч, складываясь с отраженным светом от предмета, дает интерференционную картину, которая может быть зафиксирована на пленке. Сделанный снимок выглядит как бессмысленное чередование светлых и темных линий. Hо стоит осветить снимок другим лазерным лучом, как тотчас появляется трехмерное изображение снятого предмета. Трехмерность - не единственное замечательное свойство голограмм. Если голограмму разрезать пополам и осветить лазером, каждая половина будет содержать целое первоначальное изображение. Если же продолжать разрезать голограмму на более мелкие кусочки, на каждом из них мы вновь обнаружим изображение всего объекта в целом. В отличие от обычной фотографии, каждый участок голограммы содержит всю информацию о предмете. Принцип голограммы «все в каждой части» позволяет нам принципиально по-новому подойти к вопросу организованности и упорядоченности во Вселенной.

Почти на всем своем протяжении западная наука развивалась с идеей о том, что лучший способ понять явление, будь то лягушка или атом, - это рассечь его и изучить его составные части. Голограмма показала нам, что некоторые вещи во вселенной не могут это нам позволить. Если мы будем рассекать что-либо, устроенное голографически, мы не получим частей, из которых оно состоит, а получим то же самое, но поменьше размером. Эти идеи вдохновили Д. Бома на иную интерпретацию работ А. Аспекта. Он уверен, что элементарные частицы взаимодействуют на любом расстоянии не потому, что они обмениваются таинственными сигналами между собой, а потому, что из разделенность есть иллюзия. Он поясняет, что на каком-то более глубоком уровне реальности такие частицы - не отдельные объекты, а фактически продолжения чего-то более фундаментального.

Чтобы это лучше уяснить, Д. Бом предлагает следующую иллюстрацию. Представьте себе аквариум с рыбой. Вообразите также, что вы не можете видеть аквариум непосредственно, а можете наблюдать только два телеэкрана, которые передают изображения от камер, расположенных одна спереди, другая сбоку аквариума. Глядя на экраны, вы можете заключить, что рыбы на каждом из экранов - отдельные объекты. Hо, продолжая наблюдение, через некоторое время вы обрнаружите, что между двумя рыбами на разных экранах существует взаимосвязь. Когда одна рыба меняется, другая также меняется, немного, но всегда соответственно первой; когда одну рыбу вы видите «в фас», другую непременно «в профиль». Если вы не знаете, что это один и тот же аквариум, вы скорее заключите, что рыбы должны как-то моментально общаться друг с другом, чем что это случайность. То же самое, утверждает он, можно экстраполировать и на элементарные частицы в эксперименте А. Аспекта.

Согласно Д. Бому, явное сверхсветовое взаимодействие между частицами говорит нам, что существует более глубокий уровень реальности, скрытый от нас, более высокой размерности, чем наша, по аналогии с аквариумом. И, он добавляет, мы видим частицы раздельными потому, что мы видим лишь часть действительности. Частицы - не отдельные «части», но грани более глубокого единства, которое в конечном итоге голографично и невидимо подобно объекту, снятому на голограмме. И поскольку все в физической реальности содержится в этом «фантоме», вселенная сама по себе есть проекция, голограмма. Вдобавок к ее «фантомности», такая вселенная может обладать и другими удивительными свойствами.
Если разделение частиц - это иллюзия, значит, на более глубоком уровне все предметы в мире бесконечно взаимосвязаны. Электроны в атомах углерода в нашем мозгу связаны с электронами каждого лосося, который плывет, каждого сердца, которое стучит, и каждой звезды, которая сияет в небе.
Все взаимопроникает со всем, и хотя человеческой натуре свойственно все разделять, расчленять, раскладывать по полочкам, все явления природы, все разделения искусственны и природа в конечном итоге есть безразрывная паутина. В голографическом мире даже время и пространство не могут быть взяты за основу. Потому что такая характеристика, как положение, не имеет смысла во вселенной, где ничто не отделено друг от друга; время и трехмерное пространство - как изображения рыб на экранах, которые должно считать проекциями.
С этой точки зрения реальность - это суперголограмма, в которой прошлое, настоящее и будущее существуют одновременно.

Это значит, что с помощью соответствующего инструментария можно проникнуть вглубь этой супер-голограммы и увидеть картины далекого прошлого. Что еще может нести в себе голограмма - еще неизвестно. Hапример, можно представить, что голограмма - это матрица, дающая начало всему в мире, по самой меньшей мере, там есть любые элементарные частицы, существующие либо могущие существовать, - любая форма материи и энергии возможна, от снежинки до квазара, от синего кита до гамма-лучей. Это как бы вселенский супермаркет, в котором есть все. Хотя Bohm и признает, что у нас нет способа узнать, что еще таит в себе голограмма, он берет смелость утверждать, что у нас нет причин, чтобы предположить, что в ней больше ничего нет. Другими словами, возможно, голографический уровень мира есть очередная ступень бесконечной эволюции. Надо отметить, что Д. Бом не одинок в своем мнении.

Так, например независимый нейрофизиолог из стэндфордского университета Карл Прибрам (Karl Pribram), работающий в области исследования мозга, также склоняется к теории голографичности мира. К. Прибрам пришел к этому заключению, размышляя над загадкой, где и как в мозге хранятся воспоминания. Многочисленные эксперименты показали, что информация хранится не в каком-то определенном участке мозга, а рассредоточена по всему объему мозга. В ряде решающих экспериментов в 20-х годах прошлого века К. Прибрам показал, что независимо от того, какой участок мозга крысы он удалял, он не мог добиться исчезновения условных рефлексов, выработанных у крысы до операции. Hикто не смог объяснить механизм, отвечающий этому забавному свойству памяти «все в каждой части». Позже, в 60 годах, он столкнулся с принципом голографии и понял, что он нашел объяснение, которое искали в нейрофизиологи. К. Прибрам уверен, что память содержится не в нейронах и не в группах нейронов, а в сериях нервных импульсов, циркулирующих во всем мозге, точно так же, как кусочек голограммы содержит все изображение целиком. Другими словами, он уверен, что мозг есть голограмма (или оперативной связью между голограммами?). Теория К. Прибрама также объясняет, как человеческий мозг может хранить так много воспоминаний в таком маленьком объеме. Предполагается, что человеческий мозг способен запомнить порядка 10 миллиардов бит за всю жизнь (что соответствует примерно объему информации, содержащемуся в 5 комплектах Британской энциклопедии). Было обнаружено, что к свойствам голограмм добавилась еще одна поразительная черта - огромная плотность записи. Просто изменяя угол, под которым лазеры освещают фотопленку, можно записать много различных изображений на той же поверхности. Показано, что один кубический сантиметр пленки способен хранить до 10 миллиардов бит информации.

Hаша сверхестественная способность быстро отыскивать нужную информацию из громадного объема становится более понятной, если принять, что мозг работает по принципу голограммы. Если друг спросит вас, что пришло вам на ум при слове «зебра», вам не нужно перебирать весь свой словарный запас, чтобы найти ответ. Ассоциации вроде «полосатая», «лошадь» и «живет в Африке» появляются в вашей голове мгновенно. Действительно, одно из самых удивительных свойств человеческого мышления - это то, что каждый кусок информации мгновенно взаимо - коррелируется с любым другим - еще одно свойство голограммы. Поскольку любой участок голограммы бесконечно взаимосвязан с любым другим, вполне возможно, что мозг является высшим образцом перекрестно-коррелированных систем, демонстрируемых природой. Местонахождение памяти - не единственная нейрофизиологическая загадка, которая получила трактовку в свете голографической модели мозга К. Прибрама.

Другая - это каким образом мозг способен переводить такую лавину частот, которые он воспринимает различными органами чувств (частоты света, звуковые частоты и так далее) в наше конкретное представление о мире. Кодирование и декодирование частот - это именно то, с чем голограмма справляется лучше всего. Точно так же, как голограмма служит своего рода линзой, передающим устройством, способным превращать бессмысленный набор частот в связное изображение, так и мозг, по мнению Pribram, содержит такую линзу и использует принципы голографии для математической переработки частот от органов чувств во внутренний мир наших восприятий. Множество фактов свидетельствуют о том, что мозг использует принцип голографии для функционирования.

Теория Pribram находит все больше сторонников среди нейрофизиологов. Аргентинско-итальянский исследователь Хуго Дзукарелли (Hugo Zucarelli) недавно расширил голографическую модель на область акустических явлений. Озадаченный тем фактом, что люди могут определить направление на источник звука, не поворачивая головы, даже если работает только одно ухо, Х. Дзукарелли обнаружил, что принципы голографии способны объяснить и эту способность. Он также разработал технологию голофонической записи звука, способную воспроизводить звуковые картины с потрясающим реализмом. Мысль К. Прибрама о том, что наш мозг создает «твердую» реальность, полагаясь на входные частоты, также получила блестящее экспериментальное подтверждение. Было найдено, что любой из наших органов чувств обладает гораздо большим частотным диапазоном восприимчивости, чем предполагалось ранее. Hапример, исследователи обнаружили, что наши органы зрения восприимчивы к звуковым частотам, что наше обоняние несколько зависит от того, что сейчас называется [ сosmic? ] частоты, и что даже клетки нашего тела чувствительны к широкому диапазону частот. Такие находки наводят на мысль, что это - работа голографической части нашего сознания, которая преобразует раздельные хаотические частоты в непрерывное восприятие. Hо самый потрясающий аспект голографической модели мозга К. Прибрама выявляется, если ее сопоставить с теорией Д. Бома, это то, что мы видим, лишь отражение того, что на самом деле «там» является набором голографических частот, и если мозг - тоже голограмма и лишь выбирает некоторые из частот и математически их преобразует в восприятия, что же на самом деле есть объективная реальность? Скажем проще - ее не существует.

Как испокон веков утверждают восточные религии, материя есть Майя, иллюзия, и хотя мы можем думать, что мы физические и движемся в физическом мире, это тоже иллюзия. Hа самом деле мы «приемники», плывущие в калейдоскопическом море частот, и все, что мы извлекаем из этого моря и превращаем в физическую реальность, всего лишь один источник из множества, извлеченных из голограммы. Эта поразительная новая картина реальности, синтез взглядов Бома и Прибрама названа голографической парадигмой, и хотя многие ученые восприняли ее скептически, других она воодушевила. Hебольшая, но растущая группа исследователей считает, что это одна из наиболее точных моделей мира, до сих пор предложенных. Более того, некоторые надеются, что она поможет разрешить некоторые загадки, которые не были ранее объяснены наукой и даже рассматривать паранормальные явления как часть природы.
Многочисленные исследователи, в том числе Бом и Прибрам, заключают, что многие парапсихологические феномены становятся более понятными в рамках голографической парадигмы. Во вселенной, в которой отдельный мозг есть фактически неделимая часть большой голограммы и бесконечно связана с другими, телепатия может быть просто достижением голографического уровня. Становится гораздо легче понять, как информация может доставляться от сознания «А» к сознанию «Б» на любое расстояние, и объяснить множество загадок психологии.

В частности, Г. Гроф (Grof) предвидит, что голографическая парадигма сможет предложить модель для объяснения многих загадочных феноменов, наблюдающихся людьми во время измененного состояния сознания. В 50-х годах, во время проведения исследований ЛСД в качестве психотерапев- тического препарата, у него была женщина-пациент, которая внезапно пришла к убеждению, что она есть самка доисторической рептилии. Во время галлюцинации она дала не только богато детализированное описание того, как это - быть существом, обладающим такими формами, но и отметила цветную чешую на голове у самца того же вида. Г. Гроф был поражен тем обстоятельством, что в беседе с зоологом подтвердилось наличие цветной чешуи на голове у рептилий, играющей важную роль для брачных игр, хотя женщина ранее не имела понятия о таких тонкостях. Опыт этой женщины не был уникален. Во время его исследований он сталкивался с пациентами, возвращающимися по лестнице эволюции и отождествляющими себя с самыми разными видами (на их основе построена сцена превращения человека в обезъяну в фильме «Измененные состояния»). Более того, он нашел, что такие описания часто содержат зоологические подробности, которые при проверке оказываются точными. Возврат к животным - не единственный феномен, описанный им. У него также были пациенты, которые, по-видимому, могли подключаться к своего рода области коллективного или расового бессознательного. Hеобразованные или малообразованные люди внезапно давали детальные описания похорон в зороастрийской практике либо сцены из индусской мифологии. В других опытах люди давали убедительное описание внетелесных путешествий, предсказания картин будущего, прошлых воплощений.
В более поздних исследованиях Г. Гроф обнаружил, что тот же ряд феноменов проявлялся и в сеансах терапии, не включающих применение лекарств. Поскольку общим элементом таких экспериментов явилось расширение сознания за границы пространства и времени, он назвал такие проявления «трансперсональным опытом», и в конце 60-х благодаря ему появилась новая ветвь психологии, названная «трансперсональной» психологией, посвященная целиком этой области. Хотя и вновь созданная ассоциация Трансперсональной психологии представляла собой быстро растущую группу профессионалов-единомышленников и стала уважаемой ветвью психологии, ни сам Г. Гроф, ни его коллеги не могли предложить механизма, объясняющего странные психологические явления, которые они наблюдали. Hо это изменилось с приходом голографической парадигмы Как отмечал он, если сознание фактически есть часть континуума, лабиринт, соединенный не только с каждым другим сознанием, существующим или существовавшим, но и с каждым атомом, организмом и необъятной областью пространства и времени, тот факт, что могут случайно образовываться тоннели в лабиринте и наличие трансперсонального опыта более не кажутся столь странными.

Голографическая парадигма также накладывает отпечаток на так называемые точные науки, например биологию. Кейт Флойд (Keith Floyd), психолог Колледжа «Интермонт» в штате Виржиния (Intermont, Virginia), указал, что если реальность есть всего лишь голографическая иллюзия, то нельзя дальше утверждать, что сознание есть функция мозга. Скорее, наоборот, сознание голографической системы создает мозг - так же, как тело и все наше окружение мы интерпретируем как физическое. Такой переворот наших взглядов на биологические структуры позволил исследователям указать, что медицина и наше понимание процесса выздоровления также могут измениться под влиянием голографической парадигмы. Если физическое тело не более чем голографическая проекция нашего сознания, становится ясным, что каждый из нас более ответсвенен за свое здоровье, чем это позволяют достижения медицины. То, что мы сейчас наблюдаем как кажущиееся лечение болезни, в действительности может быть сделано путем изменения сознания, которое внесет соответствующие коррективы в голограмму тела. Аналогично, альтернативные методики лечения, такие, например, как визуализация, могут работать успешно, поскольку голографическая суть мыслеобразов в конечном итоге столь же реальна, как и «реальность». Даже откровения и переживания потустороннего становятся объяснимыми с точки зрения новой парадигмы.
Биолог Лаиол Ватсон (Lyall Watson) в своей книге «Дары неизведанного» описывает встречу с индонезийской женщиной-шаманом, которая, совершая ритуальный танец, была способна заставить мгновенно исчезнуть в тонком мире целую рощу деревьев. Л. Ватсон пишет, что пока он и еще один удивленный свидетель продолжали наблюдать за ней, она заставила деревья исчезать и появляться несколько раз подряд.

Современная наука неспособна объяснить такие явления. Hо они становятся вполне логичными, если допустить, что наша «плотная» реальность не более чем голографическая проекция. Возможно, мы сможем сформулировать понятия «здесь» и «там» точнее, если определим их на уровне человеческого бессознательного, в котором все сознания бесконечно тесно взаимосвязаны.Если это так, то в целом это наиболее значительное следствие из голографической парадигмы, имея в виду, что явления, наблюдавшиеся Watson, не общедоступны только потому, что наш разум не запрограммирован доверять им, что могло бы сделать их таковыми. В голографической вселенной отсутствуют рамки возможностей для изменения ткани реальности. То, что мы называем действительностью, есть лишь холст, ожидающий, пока мы начертаем на нем любую картину, какую пожелаем. Все возможно, от сгибания ложек усилием воли, до фантасмагорических сцен в духе Кастанеды в его занятиях с Доном Хуаном, для магии, которой мы владеем изначально, не более и не менее кажущейся, чем наша способность создавать любые миры в своих фантазиях. Действительно, даже большинство наших «фундаментальных» знаний сомнительно, в то время как в голографической реальности, на которую указывает К. Прибрам, даже случайные события могли бы быть объяснены и определены с помощью голографических принципов. Совпадения и случайности внезапно обретают смысл, и все что угодно может рассматриваться как метафора, даже цепь случайных событий выражает какую-то глубинную симметрию.

Голографическая парадигма Бома и Прибрама, получит ли она дальнейшее развитие или уйдет в небытие, так или иначе можно утверждать, что она уже приобрела популярность у многих ученых. Даже если будет установлено, что голографическая модель неудовлетворительно описывает мгновенное взаимодействие элементарных частиц, по крайней мере, как указывает физик Байрбэкского колледжа в Лондоне Бейсил Хейли (Basil Hiley), открытие А. Аспекта «показало, что мы должны быть готовы рассматривать радикально новые подходы для понимания реальности».
На основании этого голография может послужить отправной точкой для разработки новой концепции, которая позволит совершенно по иному взглянуть на Вселенную. Но, как можно применить голографическую теорию для понимания природных явлений? Рассмотрим для начала сложную систему Человека.
Голографический принцип, что «каждая частица содержит в себе информацию о целом» отслеживается на уровне клеток живых организмов. Научные открытия в области клеточной биологии (генетики) продемонстрировали, что каждая клетка содержит в себе копию структуры отцовской ДНК, в которой хранится достаточно информации для воспроизведения абсолютной копии только биологического тела, это было названо клонированием. На этом основании были проведены ряд экспериментов генетиками по вегетативному размножению живых клеток (клонированию), а так же и организмов. Тот факт, что каждая клетка тела содержит информацию, достаточную для создания полноценной копии всего организма и является отражением голографического принципа: «каждая частица содержит полную информацию о целом».

Все колебания или вибрации «внутренних детекторов» системы человека являются когерентными. В биологическом организме когерентные поля формируют динамическую пространственную структуру - голограму. Если для записи и считывания обычной голограммы необходимо присутствие опорной когерентной волны, то «для биологических объектов возможно формирование безопорной голограммы, когда излучение каждой точки объекта может рассматриваться как опорное относительно всех остальных точек» (Т.Т. стр.157/104,с.210)
Хорошим подтверждением сказанному является голографическая модель генома человека. Геном представляект собой совокупность всей генетической информации человеческого организма, закодированной в структуре спирально закрученной ДНК (Т.Т../51,с.74) Учеными были получены данные о хромосомной ДНК как о биолазере с перестраиваемыми длиннами волн излучаемых полей. В соей работе «Волновой геном» акад. П.Гаряев пишет: «Принципиальным в нашей версии биоморфогенеза является фактор продуцирования геномом голографических и иных отображений, организующих пространство-время биосистем и являющихся производными известных физических полей».
Как видим современная наука достаточно далеко продвинулась в изучении естественного роста и развития тканей живых организмов, а также методов их восстановления при повреждениях различного рода, благодаря результатам умелой расшифровки генетического кода, содержащегося в ядрах живых клеток. Изучение ДНК-содержащих хромосом в ядре клетки расширило наши знания о таких явлениях, как клеточная репликация, рост и дифференциация примитивных эмбриональных клеток в специализированные клетки, которые выполняют определённые функции. Тем не менее, наших знаний о ДНК недостаточно, чтобы объяснить, как в развивающемся человеческом зародыше вновь образующиеся клетки находят правильное расположение, где они будут выполнять свои функции, где они берут информацию об архитектонике нового организма?

Формирование организма начинается с группы крошечных недифференцированных компонентов - в данном случае клеток. Каждая клетка наделяется отцовской библиотекой «Как построить и поддерживать жизнедеятельность человеческого организма» и только! Эти сведения заключены в генетическом коде ДНК в ядре каждой клетки. Клетка «читает» код, используя процесс, известный как транскрипция. Информация от ДНК транскрибируется (копируется) на промежуточную молекулу РНК, которая потом используется для точной компоновки различных функциональных и структурных протеинов клетки. ДНК покрыта специальными протеинами (гистоны и негистоны), эти уникальные протеины избирательно защищают от транскрипции генетического кода, которые не описывают особенности функционирования данной конкретной клетки. ДНК содержит всю информацию, необходимую для того, чтобы «указать» каждой клетке, как выполнять её специфическую «работу», как производить протеины и т.д. Однако ДНК не объясняет, как только что «получившие свою роль» клетки передвигаются к определённому местоположению в развивающемся теле младенца.
Термин «полевая структура» важен здесь, потому что очень точно соответствует тому, что происходит с развивающимся организмом. Весьма вероятно, что пространственное размещение клеток определяется сложной трехмерной голографической картой - энергоинформационной полевой голографической матрицы (ЭНИГМА) - ауры.
Предположительно, что это поле представляет собой спин - торсионный кластер, являющийся носителем закодированной информации пространственной организации тела и для его коррекции в том числе. Растущий организм в своём развитии должен точно следовать указаниям этой матрицы, контроль же осуществляется вселенской голографической паутиной.
Итак, фотография, на первый взгляд являющаяся объективным способом регистрации изображений, при детальном рассмотрении дает весьма субъективную информацию, рассчитанную на восприятие человеческим глазом. Недостатки фотографии в полной мере компенсируются принципиально новым методом регистрации изображений, получившим название голография.

ТОННЕЛЬ - XXI
А.Л.Влахов
акдемик БАПН, академик МАИ
вицепрезидент АИПУФО

В ряде технологических процессов можно использовать образуемые голограммами действительные изображения. При просвечивании голограмм мощным лазером можно наносить на обрабатываемые поверхности сложные узоры. В частности, голограммы уже применялись для бесконтактного нанесения микроэлектронных схем.

Основные преимущества голографических методов перед обычными - контактными или проекционными - достижение практически безаберрационного (неискаженного) изображения на большом поле. Предел разрешения голограммы может достигать долей длины световой волны.

На изображение практически не влияют пылинки, осевшие на голограмму, царапины и другие дефекты, в то время как для контактных или проекционных фотошаблонов это приводит к браку.

Другое применение голограммы в технологии - использование ее в качестве линзы. Фокусирующие свойства зонных решеток известны давно. Однако применение решеток ограничивалось трудностями их изготовления. С помощью голографических линз получали отверстия диаметром до 14 мкм в танталовой пленке, нанесенной на стекло. Голографические решетки совсем не имеют ошибок, свойственных обычным решеткам, нарезанным на делительной машине.

Явление голографии свойственно не только электромагнитным волнам (таким как свет), но и механическим (звуковым).

Соответственно, существует два основных вида голограмм: оптические и акустические. Как показала практика, голографический метод записи информации применим не только к электромагнитным, но и к звуковым волнам. Когерентные звуковые волны известны давно, и ультразвуком можно «освещать» очень большие объекты. Принципы получения звуковой и оптической голографии одни и те же, только вместо изменения интенсивности света измеряется интенсивность давления. Звуковые волны без труда проникают в непрозрачные для света предметы.

Перспективный метод акустической голографии Ї воздействие на воду звуком высокой частоты. При этом на поверхности воды возникает рябь, заменяющая собой интерференционную решетку оптической голограммы. Ее освещают лазером и получают изображение предмета, «освещаемого» звуковой волной. Однако изображение, полученное таким образом, будет находиться далеко от поверхности воды. Чтобы оно находилось близко нужно сфокусировать его при помощи линз. Также рябь легко разрушается от малейшего внешнего воздействия. Можно также просто фотографировать рябь и проявлять ее обычным способом. Можно улучшить качество голограммы, создав нефтяную пленку на поверхности воды. Другими словами, акустическая голография дает возможность создавать оптический аналог акустическому волновому полю. Такие голограммы имеют многообещающие перспективы во многих областях науки, техники и медицины.

В чем состоят преимущества использования звука вместо света? Взаимодействие звука с твердыми и жидкими телами отличается от взаимодействия с ними электромагнитного излучения. Звук может без заметных потерь энергии проходить большие расстояния в плотной однородной среде, однако он будет терять значительное количество энергии при прохождении поверхности раздела. Эта потеря связана с отражением на границе. Наоборот, электромагнитное излучение, такое, как рентгеновские лучи, теряет значительное количество энергии, проходя через среду, но на поверхности раздела потери незначительны. Поэтому только звук может быть эффективен в медицинской диагностике, при неразрушающих испытаниях, в подводной и подземной локации.

В медицине давно используются аппараты УЗИ, позволяющие при помощи звука увидеть внутренние органы человека. Однако изображение, полученное таким образом, будет двумерным. А при использовании голограммы Ї трехмерным.

С помощью голографии успешно решается и проблема визуализации акустических полей, что имеет большое прикладное значение. Возможные применения звуковой голографии: дефектоскопия, изучение рельефа морского дня, звуколокация, звуконавигация, поиск полезных ископаемых, исследование структуры земной коры и т.д. Особое значение имеет ультразвуковая голография для медицинской диагностики.

Регистрация звуковых голограмм производится таким образом, чтобы запись допускала оптическое восстановление. Для этого используются следующие методы: сканирование звукового поля, деформация поверхности жидкости под действием звукового давления, объемнаяголограмма.

Преимущество оптической голограммы над акустической в более неприхотливой поверхности записи. Фотографическая пластинка и интерференционная картина не портятся от встряхивания и даже от разлома пополам.

Голография стала для инженеров настоящим подарком: теперь они могут исследовать и регистрировать процессы и явления, описанные порой только теоретически.

Например, лопатки турбореактивного авиационного двигателя во время работы нагреваются до сотен градусов и деформируются. Каким образом распределяется при этом напряжение в детали, где находится ее слабое место, угрожающее разрушением, - определить это прежде было либо крайне сложно, либо вообще невозможно. С помощью голографических методов такие исследования проводят без особого труда.

Освещенная лазерным светом, голограмма восстанавливает световую волну, отраженную деталью при съемке, и изображение появляется там, где раньше находилась деталь. Если же деталь осталась на месте, возникают сразу две волны: одна идет непосредственно от объекта, другая - от голограммы. Эти волны когерентны и могут интерферировать. В том случае, если объект во время наблюдения подвергся деформации, его изображение покрывается полосами, по которым судят о характере изменений.

У современных технологов появилась новая идея. Она основана на способности лазера по заданной программе «сделать» из заготовки деталь любой формы и размера. Достаточно внутрь технологического лазера вставить голограмму эталонной детали, чтобы избавиться от необходимости писать программу и настраивать лазерную установку. Голограмма сама «подберет» такую конфигурацию луча и распределение его интенсивности, что «вырезанная» деталь будет точной копией эталона.

Надо обратить внимание на еще один, очень похожий способ выделения полезных сигналов, который называется оптической фильтрацией, или распознаванием образов. Подобным образом можно отыскивать нужные изображения среди множества других похожих, например отпечатков пальцев (например, в криминолистике). Для этого с эталона необходимо сделать голограмму, а затем поставить на пути светового пучка, отраженного от проверяемого объекта. Голограмма пропустит свет только от объекта, полностью идентичного эталону, «бракуя» другие изображения. Яркое пятно на выходе оптического фильтра - сигнал, что объект обнаружен. Примечательно, что поиск ведется с огромной скоростью, недостижимой при использовании других методов, поскольку он может вестись автоматически.

Голограммы музейных редкостей уже сделались довольно обычной вещью. Начинают появляться, хотя еще редко, объемные книжные иллюстрации. В то же время, возможность создания объемных изображений открывает новые направления в искусстве - изобразительную голографию и оптический дизайн. голографический голограмма микроскоп электронный

Радужные голограммы Бентона зарегистрированные на тонкослойных светочувствительных материалах (толщиной менее 20мкм) и допускающие восстановление белым светом, меняют цвет при изменении угла наблюдения. Такие голограммы получили широкое распространение в качестве изобразительных голограмм, различных элементов кодирования, маркировки, украшения полиграфической продукции и для повышения защищенности от подделок документов, ценных бумаг и товарных знаков.

Очень перспективна идея голографических носителей, которая заключается в записи информации с помощью лазерного луча на трехмерную подложку, вместо нескольких гигабайт, такая среда могла потенциально сохранять терабайты данных на носителе не больший чем компакт-диск. Голографические данные могут считываться на очень высоких скоростях.

В настоящее время технология этих устройств в достаточной степени отработана, а наиболее сложной задачей стал подбор вещества-носителя информации. В январе 2001 года компания Lucent сообщила о создании носителя, способного выдержать до 1000 циклов перезаписи без ущерба сохранности данных и скорости доступа к ним. Внешне носитель напоминает прозрачный компакт-диск. По данным Imation первые голографические диски смогут хранить около 125 Гб информации, а скорость передачи данных составит до 30 Мб/с.

Однако, голография? вещь не только практического применения, но и важная составляющая современной физики, возможный путь к пониманию устройства нашей Вселенной.

Информационная емкость устройств типа жестких дисков растет год от года, а их размер все уменьшается и уменьшается. Изучая свойства черных дыр физики, вывели абсолютный предел количества информации, которая может содержаться в определенной области пространства или определенное количество вещества. Связанные с этим результаты указывают, что наша Вселенная, которую мы воспринимаем как имеющую три пространственных измерения, на самом деле может быть "написана" на двухмерной поверхности, подобно голограмме.