Голограмма определение. Голография и ее применение

November 23rd, 2012

Компания NICE Interactive

Продолжаю выполнять заявки своих френдов из Месяц уже близиться к концу, а я еще далек от завершения очереди ваших вопросов. Сегодня мы разбираем, обсуждаем и дополняем задание trudnopisaka :

Технологии создания трехмерных голограмм. Бывают ли они непрозрачными? С чем можно сравнить энергетические затраты на их создание? Какие есть перспективы развития?

Голография основывается на двух физических явлениях - дифракции и интереференции световых волн.

Физическая идея состоит в том, что при наложении двух световых пучков, при определенных условиях возникает интерференционная картина, то есть, в пространстве возникают максимумы и минимумы интенсивности света (это подобно тому, как две системы волн на воде при пересечении образуют чередующиеся максимумы и минимумы амплитуды волн). Для того, чтобы этаинтерференционная картина была устойчивой в течение времени, необходимого для наблюдения, и ее можно было записать, эти две световых волны должны быть согласованы в пространстве и во времени. Такие согласованные волны называются когерентными.

Если волны встречаются в фазе, то они складываются друг с другом и дают результирующую волну с амплитудой, равной сумме их амплитуд. Если же они встречаются в противофазе, то будут гасить одна другую. Между двумя этими крайними положениями наблюдаются различные ситуации сложения волн. Результирующая сложения двух когерентных волн будет всегда стоячей волной. То есть интерференционная картина будет устойчива во времени. Это явление лежит в основе получения и восстановления голограмм.


Обычные источники света не обладают достаточной степенью когерентности для использования в голографии. Поэтому решающее значение для ее развития имело изобретение в 1960 г. оптического квантового генератора или лазера - удивительного источника излучения, обладающего необходимой степенью когерентности и могущего излучать строго одну длину волны.

Деннис Габор, изучая проблему записи изображения, выдвинул замечательную идею. Сущность ее реализации заключается в следующем. Если пучок когерентного света разделить на два и осветить регистрируемый объект только одной частью пучка, направив вторую часть на фотографическую пластинку, то лучи, отраженные от объекта, будут интерферировать с лучами, попадающими непосредственно на пластину от источника света. Пучок света, падающий на пластину, назвали опорным, а пучок, отраженный или прошедший через объект, предметным. Учитывая, что эти пучки получены из одного источника излучения, можно быть уверенным в том, что они когерентны. В данном случае интерференционная картина, образующаяся на пластинке, будет устойчива во времени, т.е. образуется изображение стоячей волны.

Полученная интерференционная картина является кодированным изображением, описывающим объект таким, каким он виден из всех точек фотопластинки. В этом изображении сохранена информация как об амплитуде, так и о фазе отраженных от объекта волн и, следовательно, заложена информация о трехмерном (объемном) объекте.
Фотографическая запись картины интерференции предметной волны и опорной волны обладает свойством восстанавливать изображение объекта, если на такую запись снова направить опорную волну. Т.е. при освещении записанной на пластине картины опорным пучком восстановится изображение объекта, которое зрительно невозможно отличить от реального. Если смотреть через пластинку под разными углами, можно наблюдать изображение объекта в перспективе с разных сторон. Конечно, полученную таким чудесным способом фотопластинку нельзя назвать фотографией. Это - голограмма.

В 1962 г. И. Лейт и Ю. Упатниекс получили первые пропускающие голограммы объемных объектов, выполненные с помощью лазера. Схема, предложенная ими, используется в изобразительной голографии повсеместно:
Пучок когерентного излучения лазера направляется на полупрозрачное зеркало, с помощью которого получают два пучка - предметный и опорный. Опорный пучок направляют непосредственно на фотопластинку. Предметный пучок освещает объект, голограмму которого регистрируют. Отраженный от объекта световой пучок - объектный попадает на фотопластинку. В плоскости пластинки два пучка - объектный и опорный образуют сложную интерференционную картину, которая вследствие когерентности двух пучков света остается неизменной во времени и представляет собой изображение стоячей волны. Остается только зарегистрировать ее обычным фотографическим путем.


Японский концерт с 3D голограммой Hatsune Miku

Если голограмму записать в некоторой объемной среде, то полученная модель стоячей волны однозначно воспроизводит не только амплитуду и фазу, но и спектральный состав записанного на ней излучения. Это обстоятельство было положено в основу создания трехмерных (объемных) голограмм.
В основу работы объемных голограмм положен дифракционный эффект Брэгга. B результате интерференции волн, распространяющихся в толстослойной эмульсии, образуются плоскости, засвеченные светом большей интенсивности. После проявления голограммы на засвеченных плоскостях образуются слои почернения. В результате этого создаются так называемые брэгговские плоскости, которые обладают свойством частично отражать свет. Т.е. в эмульсии создается трехмерная интерференционная картина.

Такая толстослойная голограмма обеспечивает эффективное восстановление объектной волны при условии, что угол падения опорного пучка при записи и восстановлении останется неизменным. Не допускается также изменение длины волны света при восстановлении. Такая избирательность объемной пропускающей голограммы позволяет записать на пластинке до нескольких десятков изображений, изменяя угол падения опорного пучка соответственно при записи и восстановлении.

Схема записи пропускающих объемных голограмм аналогична схеме Лейта-Упатниекса для двумерных голограмм.

При восстановлении объемной голограммы, в отличие от плоских пропускающих голограмм, образуется только одно изображение вследствие отражения от голограммы восстанавливающего пучка только в одном направлении, определяемом углом Брэгга.

Отражательные объемные голограммы записываются по иной схеме. Идея создания данных голограмм принадлежит Ю.Н.Денисюку. Поэтому голограммы этого типа известны под именем их создателя.

Опорный и предметный световые пучки образуются с помощью делителя и посредством зеркала направляются на пластину с двух сторон. Предметная волна освещает фотографическую пластину со стороны эмульсионного слоя, опорный - со стороны стеклянной подложки. Плоскости Брэгга в таких условиях записи располагаются почти параллельно плоскости фотопластины. Таким образом, толщина фотослоя может быть сравнительно небольшой.
На приведенной схеме объектная волна образуется с пропускающей голограммы. Т.е. вначале изготавливаются обычные пропускающие голограммы по описанной выше технологии, а потом уже с этих голограмм (которые называются мастер-голограммами) изготавливают в режиме копирования голограммы Денисюка.

Основное свойство отражательных голограмм - это возможность восстановления записанного изображения с помощью источника белого света, например, лампы накаливания или солнца. Не менее важным свойством является цветовая избирательность голограммы. Это значит, что при восстановлении изображения белым светом, оно восстановится в том цвете, в каком было записано. Если для записи был использован, например, рубиновый лазер, то восстановленное изображение объекта будет красным.

Уникальная 3D-голограмма в ГУМе!

В соответствии со свойством цветовой избирательности можно получить цветную голограмму объекта, в точности передающую его естественный цвет. Для этого необходимо при записи голограммы смешать три цвета: красный, зеленый и синий либо провести последовательное экспонирование фотопластинки этими цветами. Правда, технология записи цветных голограмм находится еще в экспериментальной стадии и потребует еще значительных усилий и экспериментов. Примечательно при этом, что многие, посетившие выставки голограмм, уходили оттуда в полной уверенности, что видели цветные объемные изображения!

Технология связи при помощи объемных голограмм, описанная впервые в "Звездных войнах" еще 30 лет назад, судя по всему, становится реальностью. Еще в 2010 году команда физиков из Университета Аризоны смогла разработать технологию передачи и просмотра движущихся трехмерных изображений в реальном времени. Разработчики из Аризоны называют свою работу прототипом "голографического трехмерного телеприсутствия". В реальности показанная сегодня технология представляет собой первую в мире практическую трехмерную систему передачи подлинно трехмерных изображений без необходимости использования стереоскопических очков.

"Голографическое телеприсутствие означает, что мы можем записать трехмерное изображение в одном местоположении и показать его в трехмерном режиме при помощи голограммы в другом, которое будет удалено на многие тысячи километров. Показ может проводиться в реальном времени", - говорит руководитель исследований Нассер Пейгамбарьян.


Для создания эффекта виртуальной инсталляции (3D голограммы) объекта в месте инсталляции натягивается специальная проекционная сетка. На сетку осуществляется проекция с помощью видеопроектора, который располагается за этой сеткой на расстоянии 2-3 метра. В идеале проекционная сетка натягивается на ферменную конструкцию, которая полностью обшивается темной тканью для затемнения и усиления эффекта. Создается подобие некого темного куба, на переднем плане которого разворачивается 3D изображение. Лучше чтобы действие происходило в полной темноте, тогда не будет виден темный куб и сетка, а только 3D голограмма!

Существующие системы 3D-проекций способны производить либо статические голограммы с превосходной глубиной и разрешением, либо динамические, но смотреть на них можно только под определенным углом и в основном через стереоскопические очки. Новая технология объединяет в себе преимущества обеих технологий, но лишена их многих недостатков.

В сердце новой системы находится новой фотографический полимер, разработанный калифорнийской исследовательской лабораторией Nitto Denko, работающей с электронными материалами.

В новой системе трехмерное изображение записывается на несколько камер, захватывающих объект с разных позиций и затем кодирует в цифровой сверхбыстрый лазерный поток данных, который создает на полимере голографические пиксели (хогели). Само по себе изображение - это результат оптического преломления лазеров между двумя слоями полимера.

Прототип устройства имеет 10-дюймовый монохромный экран, где картинка обновляется каждые две секунды - слишком медленно, чтобы создать иллюзию плавного движения, но все же динамика тут есть. Кроме того, ученые говорят, что показанный сегодня прототип - это лишь концепция и в будущем ученые обязательно создадут полноцветный и быстро обновляющийся поток, создающих натуральные трехмерные и плавно двигующиеся голограммы.

Профессор Пейгамбарьян прогнозирует, что примерно через 7-10 лет в домах у обычных потребителей могут появиться первые голографические системы видеосвязи. "Созданная технология абсолютно устойчива ко внешним факторам, таким как шумы и вибрация, поэтому она подходит и для промышленного внедрения", - говорит разработчик.


Голографическая 3D-установка AGP

Авторы разработки говорят, что одним из наиболее реальных и перспективных направлений разработки является именно телемедицина. "Хирурги из разных стран по всему миру смогут использовать технологию для трехмерного наблюдения за проведением операций в реальном времени и принимать участие в операции", - говорят исследователи. "Вся система полностью автоматизирована и контролируется компьютером. Лазерные сигналы сами кодируются и передаются, а приемник способен самостоятельно проводить рендеринг изображения".

И последние новости 2012 года по этой теме:

Технологии создания трехмерных изображений, которые "растут как грибы" в последнее время, воплощаясь в виде трехмерных телевизионных экранов и дисплеев компьютеров, фактически не создают полноценного трехмерного изображения. Вместо этого с помощью стереоскопических очков или других ухищрений в каждый глаз человека посылаются немного разнящиеся изображения, а уже головной мозг зрителя соединяет все это воедино прямо в голове в виде трехмерного образа. Такое "насилие" над органами чувств человека и повышенная нагрузка на мозг вызывает напряжение зрения и головные боли у некоторых людей. Поэтому, для того, что бы сделать настоящее трехмерное телевидение требуются технологии, способные создавать реальные трехмерные изображения, другими словами, голографические проекторы . Люди уже давно научились создавать высококачественные статические голограммы, но когда дело заходит о движущихся голографических изображениях, тут возникают большие проблемы.

Исследователи из бельгийского нанотехнологического исследовательского центра Imec, разработали и продемонстрировали работающий опытный образец голографического проектора нового поколения, в основе которого лежат технологии микроэлектромеханических систем (microelectromechanical system, MEMS). Использование технологий, лежащих на грани между нано- и микро-, позволит в ближайшем времени создать новый дисплей, способный демонстрировать движущиеся голографические изображения.

В основе нового голографического проектора лежит пластина, на которой находятся крошечные, в половину микрона размером, отражающие свет подвижные площадки. Эта пластина освещается светом от нескольких лазеров, направленных на нее под различными углами. Регулируя положение по вертикальной оси светоотражающих площадок можно добиться того, что волны отраженного света начинают интерферировать между собой, создавая трехмерное голографическое изображение. Это все звучит невероятно и кажется очень сложным, но, тем не менее, на одном из снимков можно увидеть статическое цветное голографическое изображение, сформированное с помощью этих крошечных светоотражающих площадок.

Пока еще исследователи Imec не создали дисплей, способный работать с движущимися изображениями. Но, согласно заявлению Франческо Пессолано (Francesco Pessolano), ведущего исследователя проекта Imec NVision: "Главное для нас было понять основной принцип, пути его реализации и проверить работоспособность опытного образца. Все остальное - это всего лишь дело техники и реализуется достаточно легко". Согласно планам Imec, первый опытный голографический проектор и система его управления должны появиться не позже середины 2012 года, вероятно что это не будет громоздкой вещью, ведь 400 миллиардов светоотражающих площадок, требующихся для создания качественного изображения, можно разместить на пластине, размером с пуговицу. Так что ждать осталось уже совсем не долго, а попозже люди смогут забыть про обычные экраны и дисплеи и полностью погрузиться в виртуальный трехмерный мир.

А какие же перспективы этого направления? Мне кажется вот они...

Голограмма Цоя на Сцене

Голограмма Тупака Шакура

Вот это тоже мне понравилось - http://kseniya.do100verno.com/blog/555/12 012 - посмотрите...

Кто еще знает современные методы воспроизведения голографиеского изображения?

Ни один научно-фантастический фильм, в котором действие происходит как в ближайшем, так и в очень отдаленном будущем, не может обойтись без голографических устройств. Голограмма - это объемное трехмерное изображение, которое, собственно, и помогает героям футуристических миров общаться друг с другом. С другой стороны, все элементы научной фантастики рано или поздно становятся частью повседневной жизни - чего только стоят роботы и полеты в космос, о которых еще сто лет назад человечество только мечтало. Но насколько далеки от нас голограммы и можно ли сделать объемное изображение в домашних условиях без использования специального оборудования?

Будущее у порога

До настоящего времени это слово могло ассоциироваться с научно-фантастическими фильмами или книгами, но наука, как известно, развивается очень быстро, и голографические изображения в скором времени могут стать неотъемлемой частью нашей повседневной жизни. Каким прорывом для связи было создание телефона, сколько изменений привнесла технология сообщения при помощи онлайн-трансляции с веб-камеры! Трудно даже представить, что может дать будущим поколениям развитие голографических технологий. К примеру, почему бы и не пройтись вместе с другом, который живет за несколько тысяч километров от вас, по парку, используя такие устройства?

Механизм в действии

Конечно, все эти фантазии пока еще находятся в достаточно далекой перспективе. На сегодня в более узком, научном смысле голограмма - это особый вид фотографий, которые создаются при специальном освещении, подобие трехмерных изображений. Голографическую фотографию можно даже без особого труда создать на практике. Главное - это механизм создания многомерного, на первый взгляд, изображения. Обеспечивается голографический эффект при помощи полупрозрачного зеркала, разделяющего пучки лазерных излучений на два четких луча. Последние также называются учеными предметной и опорной волной. Первая волна отражает фотографируемый объект и попадает на пленку, а вторая встречает ее на самой пленке, обходя при этом предмет с других ракурсов. Вот так, в принципе, и создается 3D-голограмма. Если во время освещения полученной пленки направить на нее лазерное излучение с такими же по длине волнами, то оно будет преломляться в правильных конфигурациях. Ученые сейчас разрабатывают механизмы, способные передать голографические изображения при обычном свете, без особых преломлений лучей.

Многомерная Вселенная?

Голограмма - это уникальное изобретение человека. Фактически это трехмерное пространство, которое закодировано в плоском изображении. Угол и форма зрительного представления предмета будут изменяться относительно вашей точки зрения. Подобная идея наталкивает писателей-фантастов и некоторых совсем оригинальных ученых на то, что в нашем трехмерном мире также может содержаться бесконечное количество других измерений. Такая идея получила название «теория многомерного мира», и она активно разрабатывается и популяризируется в научно-фантастических произведениях уже много лет. Непосредственным истоком идеи о многомерности была теория струн, также очень популярная в современной физике. Если верить доводам ученых, поддерживающих теорию о многомерности, то сама наша Вселенная - голограмма, поскольку наш трехмерный мир - проекция многомерного пространства. Если возможно кодирование трехмерного изображения в двухмерном, то почему нельзя допустить, что трехмерное пространство, в котором мы воспринимаем реальность, в свою очередь, является проекцией чего-то большего?

Человеческий глаз и многомерность мира

С обычными фотографиями всегда все предельно просто. Глаз воспринимает изображение таким, какое оно есть только на плоскости. Фактически функцией глаза и является «фотографирование» реальности и передача этой информации в мозг, в то время как понятие трехмерности достигается за счет перемещения глаза или самого объекта. В свою очередь, лазерный свет голограммы воспроизводит все необходимые категории изображения - плотность, цвет, освещение - и дает полноценное изображение с любой точки, с которой можно на него смотреть.

До чего дошли современные технологии?

И все-таки, голограмма - это что? Лучше всего представить особенности инноваций в сфере передачи многомерного изображения позволят данные о современной стадии разработок голографических технологий.

Особенно отличаются в этой сфере, как и везде в футуристических технологиях, японцы. Отдельно следует отметить разработки компании Aerial Burton. Результатами исследований стало устройство, позволяющее создавать голограмму при помощи ионизации молекул воздуха. Обычно для создания трехмерной проекции необходима специальная среда, за счет которой лазер формирует изображение. Такой средой может быть и водяной пар, и брызги - вода прекрасно отражает изображение лучей. Японские ученые же смогли создать совершенно иной тип лазера, который добивается переноса изображения на молекулы воздуха, благодаря чему и расположена голограмма в воздухе. Долго, правда, этот лазер пока работать не может, вновь и вновь нужно повторять процедуру ионизирования молекул воздуха. Конечно, пока даже японская компания Aerial Burton смогла достичь только переноса в пространство нескольких светящихся точек, но сами технологии подают большие надежды. В скором времени трехмерные изображения могут появиться и в сфере развлечений, а наиболее далеко идущие предположения - это замена дорожных указателей на голограммы.

Голографический проектор - своими руками!

Но пока трехмерные изображения прямо в воздухе еще нам недоступны, голограмма на телефоне - вполне обыденная вещь. Все, что для этого требуется, несколько часов на создание специального голографического проектора при помощи подручных средств.

Голограмма, своими руками созданная, не потребует от вас большого количества сложных деталей и операций. В принципе, кроме смартфона с выходом в интернет и прозрачной коробочки от CD, ничего больше и не понадобится. От такого способа воссоздания голографических изображений без ума дети, так что, если вам нечем удивить ребенка, возьмите на заметку этот метод.

Алгоритм действий

Итак, берем прозрачную пластиковую коробочку от компакт-дисков, канцелярский нож или нож для стекла, обычные ножницы, линейку, небольшой рулон скотча и, конечно же, смартфон. При помощи линейки чертим на обычном листе бумаги очертание трапеции, придерживаясь следующих пропорций: нижняя основа - шесть сантиметров, верхняя - один. Высота при этом будет равна трем с половиной сантиметрам. Прикладывая такой трафарет к стенкам коробочки, вырезаем четыре фигуры. Скрепив их между собой при помощи обычного скотча или же суперклея, получите необходимую для проекции трапецию.

Невероятное зрелище

Ну вот, теперь и настал момент истины. Проектор готов, осталось только проиграть специально обработанное изображение или видеоряд, рассчитанный на трехмерное проектирование.

Огромным плюсом создания голограмм является то, что сделать это "чудо" может практически каждый в домашних условиях, даже если нет в наличии специального оборудования. Голограммы своими руками создать может каждый, это очень легко и просто!


В последнее время в новостные ленты мировых агентств всё чаще попадают новости, связанные с голограммами. Голограммы выходят на сцену, на демонстрации, эти объёмные изображения заменяю памятники, а современные технологии позволяют каждому человеку завести свою собственную голограмму. В нашем обзоре 8 самых известных и необычных голограмм последних лет.

1. Голограмма рэпера Тупака Шакура


Культовый рэпер Тупак Шакур был убит в 1996 году. Но благодаря световым спецэффектам, он спел на сцене со Snoop Dogg и Dr. Dre на фестивале в 2012 году. Компания Digital Domain Media Group, которая специализируется на спецэффектах для фильмов, создала полноценную компьютерную иллюзию (это действительно была не проекция старого ролика).

Чтобы Тупак появился на сцене, использовался метод под названием "Призрак Пеппера", который впервые появился в 16-м веке. Для трюка требуется две комнаты: основная (в данном случае, сцена) и прилегающая скрытая комната. В главной комнате установлено зеркало под углом в 45 градусов, которое отражает образ из скрытой комнаты так, что он кажется живым.

2. Хацунэ Мику - японская голограмма-звезда


В Японии был создан компьютерный артист, который дает полномасштабные концерты. Хацунэ Мику - так называемый "вокалоид", анимированный персонаж-голограмма, который "поет" с помощью синтезатора и выступает на сцене с группой поддержки из реальных людей. Певица-голограмма была разработана Crypton Future Media, и в данный момент она является самым популярным в мире вокалоидом. Принцип отображения Мику на сцене точно такой же, как и в предыдущем случае - используется эффект "Призрака Пеппера". Оптическая иллюзия была использована для разогрева на концертах Тупака и Леди Гаги.

3. Очки дополненной реальности HoloLens для Minecraft


С новой гарнитурой HoloLens от Microsoft популярная во всем мире игра Minecraft станет выглядеть совершенно по новому. На видео во время ежегодной игровой конференции E3 в июне 2015 года было показано, как человек играет в Minecraft - в отличие от обычных очков виртуальной реальности, HoloLens проецирует трехмерные голограммы в реальный мир вокруг пользователя. Новые блоки в игре ставятся буквально с помощью движения пальца.

4. Статуя-голограмма Будды


Китайцы с помощью 3D-технологий восстановили одну из двух священных 1500-летних статуй Будды, разрушенных талибами в Афганистане в 2001 году. Чжан Ху и Лян Хонг - миллионеры из Пекина - решили воссоздать древнюю реликвию. Используя 3D световые проекции, китайцы воссоздали 45-метровую статую в месте, где она ранее стояла. Около 150 зрителей стали свидетелями светового шоу после захода солнца 6 и 7 июня 2015 года.

5. Осязаемая голограмма


Японцы сумели создать явление, о котором люди уже давно мечтали, - интерактивную голограмму. Исследователям из Digital Nature Group удалось создать 3D-изображение с помощью сканеров, зеркал и фемтосекундных лазеров. Впервые в мире был создан эффект безопасного прикосновения к голограмме за счет уменьшения длительности импульсов лазерного излучения до фемтосекунд. Как оказалось, голограмма похожа на ощупь на наждачную бумагу.

6. Голограмма марша протеста


В апреле 2015 года испанцы из No Somos Delito провели уникальную акцию - они создали голограмму протестующих демонстрантов возле нижней палаты парламента страны. Протест проводился против принятия законопроектов "гражданской безопасности". Также новые законы подразумевают уголовную ответственность за "несанкционированные" демонстрации. Поэтому и было принято решение сделать акцию протеста виртуальной.

7. Собственная голограмма


В свое время голограммы были фантастикой, а затем стали очень дорогой реальностью, требующей дорогостоящих проекторов, дыма и зеркал. AIM Holographics из Флориды считает, что потребители вскоре смогут смогут создавать свои индивидуальные 3D-изображения. Компания использует проекционный экран под названием "holo-cue", который производит 3D-изображения в натуральную величину. Кроме того, изобретатели считают, что технология может быть использована для демонстрации продукции и других бизнес-приложений.

8. Теория: все люди живут в голограмме


В 1997 году физик Хуан Малдасена выдвинул странную, но подтвержденную фактами, теорию - люди живут в гигантской голограмме. Все, что они видят вокруг себя, является лишь проекцией двумерной поверхности. Малдасена смог доказать свою теорию в уравнениях, которые частично могут объяснить принцип вселенной. В сущности, принцип утверждает, что любые данные, содержащие описание 3D-объекта, могут находиться в некой уплощенной, "реальной" версии вселенной. Малдасена пришел к этому выводу, когда обнаружил, что математические описания Вселенной на самом деле требуют меньшего размера, чем должно быть.

Не остаются в стороне от голограмм и современные бренды. Так, компания Nike представила , продемонстрировав виртуальную версию последней модели кроссовок прямо на улицах города.

Голограмма - это фотография, создающая при соответствующем освещении трехмерное изображение. Процесс создания голограммы начинается с того, что полупрозрачное зеркало разделяет пучок лазерного излучения на два луча - предметную и опорную волны.

Предметная волна отражается от фотографируемого объекта и попадает на специальную фотопленку, где встречается с опорной волной, которую направляют на пленку в обход объекта. Встретившиеся волны создают на пленке уникальную в своем роде интерференционную картину, которая кодирует трехмерную информацию об объекте. Освещение проявленной голограммы лазерным лучом реверсирует этот процесс, расшифровывая интерференционную картину для восстановления оригинального изображения, принесенного на фотопленку предметной волной.

Создание голограммы

Полупрозрачное зеркало разделяет пучок лазерного излучения на два луча (левая, нижняя часть рисунка). Когда лучи снова соединяются вместе, они записывают на пленке интерференционную картину, содержащую информацию о фотографируемом объекте.

Когда предметные волны D! и D2 и опорные волны R, и R2 встречаются под разными углами, образуется интерференционная картина. Области взаимно усиливающей интерференции показаны на диаграмме черным цветом.

Освещающий голограмму лазерный луч преломляется на интерференционной картине пленки на волны I 1 , I 2 и J 1 , J 2 , восстанавливая трехмерное изображение.

Воспроизведение изображения

1. Полнообъемное изображение 2. Голограмма с естественным освещением

При освещении голограммы лазерным излучением с такой же длиной волны, как у предметного и опорного лучей, оно преломляется точно так же, как при освещении действительного объекта. В некоторых случаях изображения на голограммах могут приобретать объемность и при освещении естественным светом.